forked from openbigdatagroup/plda
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.cc
154 lines (137 loc) · 4.93 KB
/
model.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
// Copyright 2008 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "model.h"
#include <map>
#include <sstream>
#include <string>
namespace learning_lda {
// Start by pointing to the beginning of the parent model's topic distribution
// map.
LDAModel::Iterator::Iterator(const LDAModel* parent)
: parent_(parent),
iterator_(0) { }
LDAModel::Iterator::~Iterator() { }
void LDAModel::Iterator::Next() {
CHECK(!Done());
++iterator_;
}
bool LDAModel::Iterator::Done() const {
return iterator_ == parent_->topic_distributions_.size();
}
int LDAModel::Iterator::Word() const {
CHECK(!Done());
return iterator_;
}
// Returns the current word's distribution.
const TopicCountDistribution& LDAModel::Iterator::Distribution() const {
CHECK(!Done());
return parent_->GetWordTopicDistribution(iterator_);
}
LDAModel::LDAModel(
int num_topics, const map<string, int>& word_index_map) {
int vocab_size = word_index_map.size();
memory_alloc_.resize(((int64)(num_topics)) * ((int64) vocab_size + 1), 0);
// topic_distribution and global_distribution are just accessor pointers
// and are not responsible for allocating/deleting memory.
topic_distributions_.resize(vocab_size);
global_distribution_.Reset(
&memory_alloc_[0] + (int64)vocab_size * num_topics,
num_topics);
for (int i = 0; i < vocab_size; ++i) {
topic_distributions_[i] =
TopicCountDistribution(&memory_alloc_[0] + num_topics * i,
num_topics);
}
word_index_map_ = word_index_map;
}
const TopicCountDistribution& LDAModel::GetWordTopicDistribution(
int word) const {
return topic_distributions_[word];
}
const TopicCountDistribution&
LDAModel::GetGlobalTopicDistribution() const {
return global_distribution_;
}
void LDAModel::IncrementTopic(int word,
int topic,
int64 count) {
CHECK_GT(num_topics(), topic);
CHECK_GT(num_words(), word);
topic_distributions_[word][topic] += count;
global_distribution_[topic] += count;
CHECK_LE(0, topic_distributions_[word][topic]);
}
void LDAModel::ReassignTopic(int word,
int old_topic,
int new_topic,
int64 count) {
IncrementTopic(word, old_topic, -count);
IncrementTopic(word, new_topic, count);
}
void LDAModel::AppendAsString(std::ostream& out) const {
vector<string> index_word_map(word_index_map_.size());
for (map<string, int>::const_iterator iter = word_index_map_.begin();
iter != word_index_map_.end(); ++iter) {
index_word_map[iter->second] = iter->first;
}
for (LDAModel::Iterator iter(this); !iter.Done(); iter.Next()) {
out << index_word_map[iter.Word()] << "\t";
for (int topic = 0; topic < num_topics(); ++topic) {
out << iter.Distribution()[topic]
<< ((topic < num_topics() - 1) ? " " : "\n");
}
}
}
LDAModel::LDAModel(std::istream& in, map<string, int>* word_index_map) {
word_index_map_.clear();
memory_alloc_.clear();
string line;
while (getline(in, line)) { // Each line is a training document.
if (line.size() > 0 && // Skip empty lines.
line[0] != '\r' && // Skip empty lines.
line[0] != '\n' && // Skip empty lines.
line[0] != '#') { // Skip comment lines.
std::istringstream ss(line);
string word;
double count_float;
CHECK(ss >> word);
while (ss >> count_float) {
memory_alloc_.push_back((int64)count_float);
}
int size = word_index_map_.size();
word_index_map_[word] = size;
}
}
int vocab_size = word_index_map_.size();
int num_topics = memory_alloc_.size() / vocab_size;
memory_alloc_.resize(((int64)(num_topics)) * ((int64) vocab_size + 1), 0);
// topic_distribution and global_distribution are just accessor pointers
// and are not responsible for allocating/deleting memory.
topic_distributions_.resize(vocab_size);
global_distribution_.Reset(
&memory_alloc_[0] + (int64)vocab_size * num_topics,
num_topics);
for (int i = 0; i < vocab_size; ++i) {
topic_distributions_[i] =
TopicCountDistribution(&memory_alloc_[0] + num_topics * i,
num_topics);
}
for (int i = 0; i < vocab_size; ++i) {
for (int j = 0; j < num_topics; ++j) {
global_distribution_[j] += topic_distributions_[i][j];
}
}
*word_index_map = word_index_map_;
}
} // namespace learning_lda