forked from HemulGM/DelphiOpenAI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOpenAI.FineTunes.pas
360 lines (321 loc) · 13.8 KB
/
OpenAI.FineTunes.pas
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
unit OpenAI.FineTunes;
interface
uses
System.SysUtils, OpenAI.API, OpenAI.API.Params, OpenAI.Files, OpenAI.Types;
type
TFineTuneCreateParams = class(TJSONParam)
/// <summary>
/// The ID of an uploaded file that contains training data.
/// See upload file for how to upload a file.
/// Your dataset must be formatted as a JSONL file, where each training example is a
/// JSON object with the keys "prompt" and "completion".
/// Additionally, you must upload your file with the purpose fine-tune.
/// See the fine-tuning guide for more details.
/// </summary>
function TrainingFile(const Value: string): TFineTuneCreateParams;
/// <summary>
/// The ID of an uploaded file that contains validation data.
/// If you provide this file, the data is used to generate validation metrics
/// periodically during fine-tuning. These metrics can be viewed in the fine-tuning results file.
/// Your train and validation data should be mutually exclusive.
/// Your dataset must be formatted as a JSONL file, where each validation example is a
/// JSON object with the keys "prompt" and "completion".
/// Additionally, you must upload your file with the purpose fine-tune.
/// See the fine-tuning guide for more details.
/// </summary>
function ValidationFile(const Value: string): TFineTuneCreateParams;
/// <summary>
/// The name of the base model to fine-tune. You can select one of "ada", "babbage", "curie", "davinci", or a
/// fine-tuned model created after 2022-04-21. To learn more about these models, see the Models documentation.
/// </summary>
function Model(const Value: string): TFineTuneCreateParams;
/// <summary>
/// The number of epochs to train the model for. An epoch refers to one full cycle through the training dataset.
/// </summary>
function nEpochs(const Value: Integer = 4): TFineTuneCreateParams;
/// <summary>
/// The batch size to use for training. The batch size is the number of training examples used to train a
/// single forward and backward pass.
/// By default, the batch size will be dynamically configured to be ~0.2% of the number of examples in the
/// training set, capped at 256 - in general, we've found that larger batch sizes tend to work better for larger datasets.
/// </summary>
function BatchSize(const Value: Integer): TFineTuneCreateParams;
/// <summary>
/// The learning rate multiplier to use for training. The fine-tuning learning rate is the original
/// learning rate used for pretraining multiplied by this value.
/// By default, the learning rate multiplier is the 0.05, 0.1, or 0.2 depending on
/// final batch_size (larger learning rates tend to perform better with larger batch sizes).
/// We recommend experimenting with values in the range 0.02 to 0.2 to see what produces the best results.
/// </summary>
function LearningRateMultiplier(const Value: Extended): TFineTuneCreateParams;
/// <summary>
/// The weight to use for loss on the prompt tokens. This controls how much the model tries to
/// learn to generate the prompt (as compared to the completion which always has a weight of 1.0),
/// and can add a stabilizing effect to training when completions are short.
/// If prompts are extremely long (relative to completions), it may make sense to reduce this weight so as
/// to avoid over-prioritizing learning the prompt.
/// </summary>
function PromptLossWeight(const Value: Extended = 0.01): TFineTuneCreateParams;
/// <summary>
/// If set, we calculate classification-specific metrics such as accuracy and F-1 score using the
/// validation set at the end of every epoch. These metrics can be viewed in the results file.
/// In order to compute classification metrics, you must provide a validation_file.
/// Additionally, you must specify classification_n_classes for multiclass classification or
/// classification_positive_class for binary classification.
/// </summary>
function ComputeClassificationMetrics(const Value: Boolean = True): TFineTuneCreateParams;
/// <summary>
/// The number of classes in a classification task.
/// This parameter is required for multiclass classification.
/// </summary>
function ClassificationNClasses(const Value: Integer): TFineTuneCreateParams;
/// <summary>
/// The positive class in binary classification.
/// This parameter is needed to generate precision, recall, and F1 metrics when doing binary classification.
/// </summary>
function ClassificationPositiveClass(const Value: string): TFineTuneCreateParams;
/// <summary>
/// If this is provided, we calculate F-beta scores at the specified beta values.
/// The F-beta score is a generalization of F-1 score. This is only used for binary classification.
/// With a beta of 1 (i.e. the F-1 score), precision and recall are given the same weight.
/// A larger beta score puts more weight on recall and less on precision.
/// A smaller beta score puts more weight on precision and less on recall.
/// </summary>
function ClassificationBetas(const Value: TArray<Extended>): TFineTuneCreateParams;
/// <summary>
/// A string of up to 40 characters that will be added to your fine-tuned model name.
/// For example, a suffix of "custom-model-name" would produce a model name like
/// ada:ft-your-org:custom-model-name-2022-02-15-04-21-04.
/// </summary>
function Suffix(const Value: string): TFineTuneCreateParams;
end;
THyperparams = class
private
FBatch_size: Extended;
FLearning_rate_multiplier: Extended;
FN_epochs: Extended;
FPrompt_loss_weight: Extended;
public
property BatchSize: Extended read FBatch_size write FBatch_size;
property LearningRateMultiplier: Extended read FLearning_rate_multiplier write FLearning_rate_multiplier;
property nEpochs: Extended read FN_epochs write FN_epochs;
property PromptLossWeight: Extended read FPrompt_loss_weight write FPrompt_loss_weight;
end;
TFineTuneEvent = class
private
FCreated_at: Int64;
FLevel: string;
FMessage: string;
FObject: string;
public
property CreatedAt: Int64 read FCreated_at write FCreated_at;
property Level: string read FLevel write FLevel;
property Message: string read FMessage write FMessage;
property &Object: string read FObject write FObject;
end;
TFineTuneEvents = class
private
FObject: string;
FData: TArray<TFineTuneEvent>;
public
property &Object: string read FObject write FObject;
property Data: TArray<TFineTuneEvent> read FData write FData;
destructor Destroy; override;
end;
TFineTune = class
private
FCreated_at: Int64;
FEvents: TArray<TFineTuneEvent>;
FHyperparams: THyperparams;
FId: string;
FModel: string;
FObject: string;
FOrganization_id: string;
FResult_files: TArray<TFile>;
FStatus: string;
FTraining_files: TArray<TFile>;
FUpdated_at: Int64;
FValidation_files: TArray<TFile>;
FFine_tuned_model: string;
public
property CreatedAt: Int64 read FCreated_at write FCreated_at;
property Events: TArray<TFineTuneEvent> read FEvents write FEvents;
property Hyperparams: THyperparams read FHyperparams write FHyperparams;
property FineTunedModel: string read FFine_tuned_model write FFine_tuned_model;
property Id: string read FId write FId;
property Model: string read FModel write FModel;
property &Object: string read FObject write FObject;
property OrganizationId: string read FOrganization_id write FOrganization_id;
property ResultFiles: TArray<TFile> read FResult_files write FResult_files;
/// <summary>
/// succeeded, cancelled, pending
/// </summary>
property Status: string read FStatus write FStatus;
property TrainingFiles: TArray<TFile> read FTraining_files write FTraining_files;
property UpdatedAt: Int64 read FUpdated_at write FUpdated_at;
property ValidationFiles: TArray<TFile> read FValidation_files write FValidation_files;
destructor Destroy; override;
end;
TFineTunes = class
private
FObject: string;
FData: TArray<TFineTune>;
public
property &Object: string read FObject write FObject;
property Data: TArray<TFineTune> read FData write FData;
destructor Destroy; override;
end;
TFineTunesRoute = class(TOpenAIAPIRoute)
public
/// <summary>
/// Creates a job that fine-tunes a specified model from a given dataset.
/// Response includes details of the enqueued job including job status and the name of the fine-tuned models once complete.
/// </summary>
function Create(ParamProc: TProc<TFineTuneCreateParams>): TFineTune; deprecated 'Use FineTuning';
/// <summary>
/// List your organization's fine-tuning jobs
/// </summary>
function List: TFineTunes; deprecated 'Use FineTuning';
/// <summary>
/// Gets info about the fine-tune job.
/// </summary>
function Retrieve(const FineTuneId: string): TFineTune; deprecated 'Use FineTuning';
/// <summary>
/// Immediately cancel a fine-tune job.
/// </summary>
function Cancel(const FineTuneId: string): TFineTune; deprecated 'Use FineTuning';
/// <summary>
/// Get fine-grained status updates for a fine-tune job.
/// </summary>
/// <param name="FineTuneId">Id of FineTune</param>
/// <param name="Stream">Whether to stream events for the fine-tune job.
/// If set to true, events will be sent as data-only server-sent events as they become available.
/// The stream will terminate with a data: [DONE] message when the job is finished (succeeded, cancelled, or failed).
/// If set to false, only events generated so far will be returned.
/// </param>
function ListEvents(const FineTuneId: string; Stream: Boolean = False): TFineTuneEvents; deprecated 'Use FineTuning';
/// <summary>
/// Delete a fine-tuned model. You must have the Owner role in your organization.
/// </summary>
function Delete(const Model: string): TDeletionStatus; deprecated 'Use FineTuning';
end;
implementation
uses
System.StrUtils;
{ TFineTunesRoute }
function TFineTunesRoute.Cancel(const FineTuneId: string): TFineTune;
begin
Result := API.Post<TFineTune>('fine-tunes/' + FineTuneId + '/cancel');
end;
function TFineTunesRoute.Create(ParamProc: TProc<TFineTuneCreateParams>): TFineTune;
begin
Result := API.Post<TFineTune, TFineTuneCreateParams>('fine-tunes', ParamProc);
end;
function TFineTunesRoute.Delete(const Model: string): TDeletionStatus;
begin
Result := API.Delete<TDeletionStatus>('models/' + Model);
end;
function TFineTunesRoute.List: TFineTunes;
begin
Result := API.Get<TFineTunes>('fine-tunes');
end;
function TFineTunesRoute.ListEvents(const FineTuneId: string; Stream: Boolean): TFineTuneEvents;
begin
Result := API.Get<TFineTuneEvents>('fine-tunes/' + FineTuneId + '/events' + IfThen(Stream, '?stream=true'));
end;
function TFineTunesRoute.Retrieve(const FineTuneId: string): TFineTune;
begin
Result := API.Get<TFineTune>('fine-tunes/' + FineTuneId);
end;
{ TFineTune }
destructor TFineTune.Destroy;
var
Event: TFineTuneEvent;
AFile: TFile;
begin
if Assigned(FHyperparams) then
FHyperparams.Free;
for Event in FEvents do
if Assigned(Event) then
Event.Free;
for AFile in FResult_files do
if Assigned(AFile) then
AFile.Free;
for AFile in FTraining_files do
if Assigned(AFile) then
AFile.Free;
for AFile in FValidation_files do
if Assigned(AFile) then
AFile.Free;
inherited;
end;
{ TFineTunes }
destructor TFineTunes.Destroy;
var
Item: TFineTune;
begin
for Item in FData do
if Assigned(Item) then
Item.Free;
inherited;
end;
{ TFineTuneEvents }
destructor TFineTuneEvents.Destroy;
var
Item: TFineTuneEvent;
begin
for Item in FData do
if Assigned(Item) then
Item.Free;
inherited;
end;
{ TFineTuneCreateParams }
function TFineTuneCreateParams.BatchSize(const Value: Integer): TFineTuneCreateParams;
begin
Result := TFineTuneCreateParams(Add('batch_size', Value));
end;
function TFineTuneCreateParams.ClassificationBetas(const Value: TArray<Extended>): TFineTuneCreateParams;
begin
Result := TFineTuneCreateParams(Add('classification_betas', Value));
end;
function TFineTuneCreateParams.ClassificationNClasses(const Value: Integer): TFineTuneCreateParams;
begin
Result := TFineTuneCreateParams(Add('classification_n_classes', Value));
end;
function TFineTuneCreateParams.ClassificationPositiveClass(const Value: string): TFineTuneCreateParams;
begin
Result := TFineTuneCreateParams(Add('classification_positive_class', Value));
end;
function TFineTuneCreateParams.ComputeClassificationMetrics(const Value: Boolean): TFineTuneCreateParams;
begin
Result := TFineTuneCreateParams(Add('compute_classification_metrics', Value));
end;
function TFineTuneCreateParams.LearningRateMultiplier(const Value: Extended): TFineTuneCreateParams;
begin
Result := TFineTuneCreateParams(Add('learning_rate_multiplier', Value));
end;
function TFineTuneCreateParams.Model(const Value: string): TFineTuneCreateParams;
begin
Result := TFineTuneCreateParams(Add('model', Value));
end;
function TFineTuneCreateParams.nEpochs(const Value: Integer): TFineTuneCreateParams;
begin
Result := TFineTuneCreateParams(Add('n_epochs', Value));
end;
function TFineTuneCreateParams.PromptLossWeight(const Value: Extended): TFineTuneCreateParams;
begin
Result := TFineTuneCreateParams(Add('prompt_loss_weight', Value));
end;
function TFineTuneCreateParams.Suffix(const Value: string): TFineTuneCreateParams;
begin
Result := TFineTuneCreateParams(Add('suffix', Value));
end;
function TFineTuneCreateParams.TrainingFile(const Value: string): TFineTuneCreateParams;
begin
Result := TFineTuneCreateParams(Add('training_file', Value));
end;
function TFineTuneCreateParams.ValidationFile(const Value: string): TFineTuneCreateParams;
begin
Result := TFineTuneCreateParams(Add('validation_file', Value));
end;
end.