forked from paul-buerkner/brms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_stancode.R
201 lines (198 loc) · 5.9 KB
/
make_stancode.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
#' Stan Code for \pkg{brms} Models
#'
#' Generate Stan code for \pkg{brms} models
#'
#' @inheritParams brm
#' @param silent logical; If \code{TRUE}, warnings of
#' the Stan parser will be suppressed.
#' @param ... Other arguments for internal usage only
#'
#' @return A character string containing the fully commented \pkg{Stan} code
#' to fit a \pkg{brms} model.
#'
#' @examples
#' make_stancode(rating ~ treat + period + carry + (1|subject),
#' data = inhaler, family = "cumulative")
#'
#' make_stancode(count ~ log_Age_c + log_Base4_c * Trt_c
#' + (1|patient) + (1|visit),
#' data = epilepsy, family = "poisson")
#'
#' @export
make_stancode <- function(formula, data, family = gaussian(),
prior = NULL, autocor = NULL,
cov_ranef = NULL, sparse = FALSE,
sample_prior = c("no", "yes", "only"),
stanvars = NULL, stan_funs = NULL,
save_model = NULL, silent = FALSE, ...) {
dots <- list(...)
# some input checks
if (is.brmsfit(formula)) {
stop2("Use 'stancode' to extract Stan code from 'brmsfit' objects.")
}
if (length(stan_funs) > 0) {
stan_funs <- as_one_character(stan_funs)
}
formula <- validate_formula(
formula, data = data, family = family, autocor = autocor
)
bterms <- parse_bf(formula)
sample_prior <- check_sample_prior(sample_prior)
prior <- check_prior(
prior, formula, data = data, sample_prior = sample_prior,
warn = !isTRUE(dots$brm_call)
)
data <- update_data(data, bterms = bterms)
ranef <- tidy_ranef(bterms, data = data)
meef <- tidy_meef(bterms, data = data)
stanvars <- validate_stanvars(stanvars)
scode_effects <- stan_effects(
bterms, data = data, prior = prior,
ranef = ranef, meef = meef, sparse = sparse
)
scode_ranef <- stan_re(ranef, prior = prior, cov_ranef = cov_ranef)
scode_llh <- stan_llh(bterms, data = data)
scode_global_defs <- stan_global_defs(
bterms, prior = prior, ranef = ranef, cov_ranef = cov_ranef
)
scode_Xme <- stan_Xme(meef, prior = prior)
# get priors for all parameters in the model
scode_prior <- paste0(
scode_effects$prior,
scode_ranef$prior,
scode_Xme$prior,
stan_prior(class = "", prior = prior)
)
# generate functions block
scode_functions <- paste0(
"// generated with brms ", utils::packageVersion("brms"), "\n",
"functions { \n",
scode_global_defs$fun,
stan_funs,
"} \n"
)
# generate data block
scode_data <- paste0(
"data { \n",
" int<lower=1> N; // total number of observations \n",
scode_effects$data,
scode_ranef$data,
scode_Xme$data,
" int prior_only; // should the likelihood be ignored? \n",
collapse_stanvars(stanvars),
"} \n"
)
# generate transformed parameters block
scode_transformed_data <- paste0(
"transformed data { \n",
scode_global_defs$tdataD,
scode_effects$tdataD,
scode_effects$tdataC,
"} \n"
)
# generate parameters block
scode_parameters <- paste0(
scode_effects$par,
scode_ranef$par,
scode_Xme$par
)
scode_rngprior <- stan_rngprior(
sample_prior = sample_prior,
par_declars = scode_parameters,
gen_quantities = scode_effects$genD,
prior = scode_prior,
prior_special = attr(prior, "special")
)
scode_parameters <- paste0(
"parameters { \n",
scode_parameters,
scode_rngprior$par,
"} \n"
)
# generate transformed parameters block
scode_transformed_parameters <- paste0(
"transformed parameters { \n",
scode_effects$tparD,
scode_ranef$tparD,
scode_Xme$tparD,
scode_effects$tparC1,
scode_ranef$tparC1,
"} \n"
)
# generate model block
scode_model_loop <- paste0(
scode_effects$modelC2,
scode_effects$modelC3,
scode_effects$modelC4
)
if (isTRUE(nzchar(scode_model_loop))) {
scode_model_loop <- paste0(
" for (n in 1:N) { \n", scode_model_loop, " } \n"
)
}
scode_model <- paste0(
"model { \n",
scode_effects$modelD,
scode_effects$modelC1,
scode_effects$modelCgp1,
scode_model_loop,
scode_effects$modelC5,
" // priors including all constants \n",
scode_prior,
" // likelihood including all constants \n",
" if (!prior_only) { \n",
scode_llh,
" } \n",
scode_rngprior$model,
"} \n"
)
# generate generated quantities block
scode_generated_quantities <- paste0(
"generated quantities { \n",
scode_effects$genD,
scode_ranef$genD,
scode_Xme$genD,
scode_rngprior$genD,
scode_effects$genC,
scode_ranef$genC,
scode_rngprior$genC,
scode_Xme$genC,
"} \n"
)
# combine all elements into a complete Stan model
complete_model <- paste0(
scode_functions,
scode_data,
scode_transformed_data,
scode_parameters,
scode_transformed_parameters,
scode_model,
scode_generated_quantities
)
# expand '#include' statements by calling rstan::stanc_builder
if (!isTRUE(dots$testmode)) {
temp_file <- tempfile(fileext = ".stan")
cat(complete_model, file = temp_file)
isystem <- system.file("chunks", package = "brms")
complete_model <- eval_silent(
rstan::stanc_builder(
file = temp_file, isystem = isystem,
obfuscate_model_name = TRUE
),
type = "message", silent = silent
)
model_name <- paste(summarise_families(formula), "brms-model")
complete_model$model_name <- model_name
if (is.character(save_model)) {
str_add(complete_model$model_code) <- "\n"
cat(complete_model$model_code, file = save_model)
}
class(complete_model$model_code) <- c("character", "brmsmodel")
if (!isTRUE(dots$brm_call)) {
complete_model <- complete_model$model_code
}
} else {
class(complete_model) <- c("character", "brmsmodel")
}
complete_model
}