forked from facebookresearch/Detectron
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize_results.py
144 lines (124 loc) · 3.83 KB
/
visualize_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#!/usr/bin/env python2
# Copyright (c) 2017-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
"""Script for visualizing results saved in a detections.pkl file."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import argparse
import cPickle as pickle
import cv2
import os
import sys
from datasets.json_dataset import JsonDataset
import utils.vis as vis_utils
# OpenCL may be enabled by default in OpenCV3; disable it because it's not
# thread safe and causes unwanted GPU memory allocations.
cv2.ocl.setUseOpenCL(False)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
'--dataset',
dest='dataset',
help='dataset',
default='coco_2014_minival',
type=str
)
parser.add_argument(
'--detections',
dest='detections',
help='detections pkl file',
default='',
type=str
)
parser.add_argument(
'--thresh',
dest='thresh',
help='detection prob threshold',
default=0.9,
type=float
)
parser.add_argument(
'--output-dir',
dest='output_dir',
help='output directory',
default='./tmp/vis-output',
type=str
)
parser.add_argument(
'--first',
dest='first',
help='only visualize the first k images',
default=0,
type=int
)
if len(sys.argv) == 1:
parser.print_help()
sys.exit(1)
args = parser.parse_args()
return args
def vis(dataset, detections_pkl, thresh, output_dir, limit=0):
ds = JsonDataset(dataset)
roidb = ds.get_roidb()
with open(detections_pkl, 'r') as f:
dets = pickle.load(f)
assert all(k in dets for k in ['all_boxes', 'all_segms', 'all_keyps']), \
'Expected detections pkl file in the format used by test_engine.py'
all_boxes = dets['all_boxes']
all_segms = dets['all_segms']
all_keyps = dets['all_keyps']
def id_or_index(ix, val):
if len(val) == 0:
return val
else:
return val[ix]
for ix, entry in enumerate(roidb):
if limit > 0 and ix >= limit:
break
if ix % 10 == 0:
print('{:d}/{:d}'.format(ix + 1, len(roidb)))
im = cv2.imread(entry['image'])
im_name = os.path.splitext(os.path.basename(entry['image']))[0]
cls_boxes_i = [
id_or_index(ix, cls_k_boxes) for cls_k_boxes in all_boxes
]
cls_segms_i = [
id_or_index(ix, cls_k_segms) for cls_k_segms in all_segms
]
cls_keyps_i = [
id_or_index(ix, cls_k_keyps) for cls_k_keyps in all_keyps
]
vis_utils.vis_one_image(
im[:, :, ::-1],
'{:d}_{:s}'.format(ix, im_name),
os.path.join(output_dir, 'vis'),
cls_boxes_i,
segms=cls_segms_i,
keypoints=cls_keyps_i,
thresh=thresh,
box_alpha=0.8,
dataset=ds,
show_class=True
)
if __name__ == '__main__':
opts = parse_args()
vis(
opts.dataset,
opts.detections,
opts.thresh,
opts.output_dir,
limit=opts.first
)