forked from tidyverse/dplyr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRcppExports.R
164 lines (129 loc) · 4.27 KB
/
RcppExports.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# This file was generated by Rcpp::compileAttributes
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393
loc <- function(data) {
.Call('dplyr_loc', PACKAGE = 'dplyr', data)
}
dfloc <- function(df) {
.Call('dplyr_dfloc', PACKAGE = 'dplyr', df)
}
plfloc <- function(data) {
.Call('dplyr_plfloc', PACKAGE = 'dplyr', data)
}
semi_join_impl <- function(x, y, by) {
.Call('dplyr_semi_join_impl', PACKAGE = 'dplyr', x, y, by)
}
anti_join_impl <- function(x, y, by) {
.Call('dplyr_anti_join_impl', PACKAGE = 'dplyr', x, y, by)
}
inner_join_impl <- function(x, y, by) {
.Call('dplyr_inner_join_impl', PACKAGE = 'dplyr', x, y, by)
}
left_join_impl <- function(x, y, by) {
.Call('dplyr_left_join_impl', PACKAGE = 'dplyr', x, y, by)
}
right_join_impl <- function(x, y, by) {
.Call('dplyr_right_join_impl', PACKAGE = 'dplyr', x, y, by)
}
compatible_data_frame <- function(x, y, ignore_col_order = TRUE, convert = FALSE) {
.Call('dplyr_compatible_data_frame', PACKAGE = 'dplyr', x, y, ignore_col_order, convert)
}
equal_data_frame <- function(x, y, ignore_col_order = TRUE, ignore_row_order = TRUE, convert = FALSE) {
.Call('dplyr_equal_data_frame', PACKAGE = 'dplyr', x, y, ignore_col_order, ignore_row_order, convert)
}
all_equal_data_frame <- function(args, env) {
.Call('dplyr_all_equal_data_frame', PACKAGE = 'dplyr', args, env)
}
union_data_frame <- function(x, y) {
.Call('dplyr_union_data_frame', PACKAGE = 'dplyr', x, y)
}
intersect_data_frame <- function(x, y) {
.Call('dplyr_intersect_data_frame', PACKAGE = 'dplyr', x, y)
}
setdiff_data_frame <- function(x, y) {
.Call('dplyr_setdiff_data_frame', PACKAGE = 'dplyr', x, y)
}
match_data_frame <- function(x, y) {
.Call('dplyr_match_data_frame', PACKAGE = 'dplyr', x, y)
}
shallow_copy <- function(data) {
.Call('dplyr_shallow_copy', PACKAGE = 'dplyr', data)
}
grouped_df_impl <- function(data, symbols, drop) {
.Call('dplyr_grouped_df_impl', PACKAGE = 'dplyr', data, symbols, drop)
}
build_index_cpp <- function(data) {
.Call('dplyr_build_index_cpp', PACKAGE = 'dplyr', data)
}
filter_impl <- function(df, args, env) {
.Call('dplyr_filter_impl', PACKAGE = 'dplyr', df, args, env)
}
mutate_impl <- function(df, args, env) {
.Call('dplyr_mutate_impl', PACKAGE = 'dplyr', df, args, env)
}
order_impl <- function(args, env) {
.Call('dplyr_order_impl', PACKAGE = 'dplyr', args, env)
}
arrange_impl <- function(data, args, dots) {
.Call('dplyr_arrange_impl', PACKAGE = 'dplyr', data, args, dots)
}
sort_impl <- function(data) {
.Call('dplyr_sort_impl', PACKAGE = 'dplyr', data)
}
group_size_grouped_cpp <- function(gdf) {
.Call('dplyr_group_size_grouped_cpp', PACKAGE = 'dplyr', gdf)
}
summarise_impl <- function(df, args, env) {
.Call('dplyr_summarise_impl', PACKAGE = 'dplyr', df, args, env)
}
#' Efficiently count the number of unique values in a vector.
#'
#' This is a faster and more concise equivalent of \code{length(unique(x))}
#'
#' @param x a vector of values
#' @export
#' @examples
#' x <- sample(1:10, 1e5, rep = TRUE)
#' length(unique(x))
#' n_distinct(x)
n_distinct <- function(x) {
.Call('dplyr_n_distinct', PACKAGE = 'dplyr', x)
}
#' @export
#' @rdname rbind
rbind_all <- function(dots) {
.Call('dplyr_rbind_all', PACKAGE = 'dplyr', dots)
}
as_regular_df <- function(df) {
.Call('dplyr_as_regular_df', PACKAGE = 'dplyr', df)
}
ungroup_grouped_df <- function(df) {
.Call('dplyr_ungroup_grouped_df', PACKAGE = 'dplyr', df)
}
tbl_df_impl <- function(df) {
.Call('dplyr_tbl_df_impl', PACKAGE = 'dplyr', df)
}
split_indices <- function(group, groups) {
.Call('dplyr_split_indices', PACKAGE = 'dplyr', group, groups)
}
#' Cumulativate versions of any, all, and mean
#'
#' dplyr adds \code{cumall}, \code{cumany}, and \code{cummean} to complete
#' R's set of cumulate functions to match the aggregation functions available
#' in most databases
#'
#' @param x For \code{cumall} & \code{cumany}, a logical vector; for
#' \code{cummean} an integer or numeric vector
#' @export
cumall <- function(x) {
.Call('dplyr_cumall', PACKAGE = 'dplyr', x)
}
#' @export
#' @rdname cumall
cumany <- function(x) {
.Call('dplyr_cumany', PACKAGE = 'dplyr', x)
}
#' @export
#' @rdname cumall
cummean <- function(x) {
.Call('dplyr_cummean', PACKAGE = 'dplyr', x)
}