forked from influxdata/influxdb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtree.go
428 lines (366 loc) · 8.12 KB
/
tree.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
package radix
// This is a fork of https://github.com/armon/go-radix that removes the
// ability to update nodes as well as uses fixed int value type.
import (
"bytes"
"sort"
"sync"
)
// leafNode is used to represent a value
type leafNode struct {
valid bool // true if key/val are valid
key []byte
val int
}
// edge is used to represent an edge node
type edge struct {
label byte
node *node
}
type node struct {
// leaf is used to store possible leaf
leaf leafNode
// prefix is the common prefix we ignore
prefix []byte
// Edges should be stored in-order for iteration.
// We avoid a fully materialized slice to save memory,
// since in most cases we expect to be sparse
edges edges
}
func (n *node) isLeaf() bool {
return n.leaf.valid
}
func (n *node) addEdge(e edge) {
// find the insertion point with bisection
num := len(n.edges)
i, j := 0, num
for i < j {
h := int(uint(i+j) >> 1)
if n.edges[h].label < e.label {
i = h + 1
} else {
j = h
}
}
// make room, copy the suffix, and insert.
n.edges = append(n.edges, edge{})
copy(n.edges[i+1:], n.edges[i:])
n.edges[i] = e
}
func (n *node) replaceEdge(e edge) {
num := len(n.edges)
idx := sort.Search(num, func(i int) bool {
return n.edges[i].label >= e.label
})
if idx < num && n.edges[idx].label == e.label {
n.edges[idx].node = e.node
return
}
panic("replacing missing edge")
}
func (n *node) getEdge(label byte) *node {
// linear search for small slices
if len(n.edges) < 16 {
for _, e := range n.edges {
if e.label == label {
return e.node
}
}
return nil
}
// binary search for larger
num := len(n.edges)
i, j := 0, num
for i < j {
h := int(uint(i+j) >> 1)
if n.edges[h].label < label {
i = h + 1
} else {
j = h
}
}
if i < num && n.edges[i].label == label {
return n.edges[i].node
}
return nil
}
type edges []edge
// Tree implements a radix tree. This can be treated as a
// Dictionary abstract data type. The main advantage over
// a standard hash map is prefix-based lookups and
// ordered iteration. The tree is safe for concurrent access.
type Tree struct {
mu sync.RWMutex
root *node
size int
buf buffer
}
// New returns an empty Tree
func New() *Tree {
return &Tree{root: &node{}}
}
// NewFromMap returns a new tree containing the keys
// from an existing map
func NewFromMap(m map[string]int) *Tree {
t := &Tree{root: &node{}}
for k, v := range m {
t.Insert([]byte(k), v)
}
return t
}
// Len is used to return the number of elements in the tree
func (t *Tree) Len() int {
t.mu.RLock()
size := t.size
t.mu.RUnlock()
return size
}
// longestPrefix finds the length of the shared prefix
// of two strings
func longestPrefix(k1, k2 []byte) int {
// for loops can't be inlined, but goto's can. we also use uint to help
// out the compiler to prove bounds checks aren't necessary on the index
// operations.
lk1, lk2 := uint(len(k1)), uint(len(k2))
i := uint(0)
loop:
if lk1 <= i || lk2 <= i {
return int(i)
}
if k1[i] != k2[i] {
return int(i)
}
i++
goto loop
}
// Insert is used to add a newentry or update
// an existing entry. Returns if inserted.
func (t *Tree) Insert(s []byte, v int) (int, bool) {
t.mu.RLock()
var parent *node
n := t.root
search := s
for {
// Handle key exhaution
if len(search) == 0 {
if n.isLeaf() {
old := n.leaf.val
t.mu.RUnlock()
return old, false
}
n.leaf = leafNode{
key: t.buf.Copy(s),
val: v,
valid: true,
}
t.size++
t.mu.RUnlock()
return v, true
}
// Look for the edge
parent = n
n = n.getEdge(search[0])
// No edge, create one
if n == nil {
newNode := &node{
leaf: leafNode{
key: t.buf.Copy(s),
val: v,
valid: true,
},
prefix: t.buf.Copy(search),
}
e := edge{
label: search[0],
node: newNode,
}
parent.addEdge(e)
t.size++
t.mu.RUnlock()
return v, true
}
// Determine longest prefix of the search key on match
commonPrefix := longestPrefix(search, n.prefix)
if commonPrefix == len(n.prefix) {
search = search[commonPrefix:]
continue
}
// Split the node
t.size++
child := &node{
prefix: t.buf.Copy(search[:commonPrefix]),
}
parent.replaceEdge(edge{
label: search[0],
node: child,
})
// Restore the existing node
child.addEdge(edge{
label: n.prefix[commonPrefix],
node: n,
})
n.prefix = n.prefix[commonPrefix:]
// Create a new leaf node
leaf := leafNode{
key: t.buf.Copy(s),
val: v,
valid: true,
}
// If the new key is a subset, add to to this node
search = search[commonPrefix:]
if len(search) == 0 {
child.leaf = leaf
t.mu.RUnlock()
return v, true
}
// Create a new edge for the node
child.addEdge(edge{
label: search[0],
node: &node{
leaf: leaf,
prefix: t.buf.Copy(search),
},
})
t.mu.RUnlock()
return v, true
}
}
// DeletePrefix is used to delete the subtree under a prefix
// Returns how many nodes were deleted
// Use this to delete large subtrees efficiently
func (t *Tree) DeletePrefix(s []byte) int {
t.mu.Lock()
defer t.mu.Unlock()
return t.deletePrefix(nil, t.root, s)
}
// delete does a recursive deletion
func (t *Tree) deletePrefix(parent, n *node, prefix []byte) int {
// Check for key exhaustion
if len(prefix) == 0 {
// Remove the leaf node
subTreeSize := 0
//recursively walk from all edges of the node to be deleted
recursiveWalk(n, func(s []byte, v int) bool {
subTreeSize++
return false
})
if n.isLeaf() {
n.leaf = leafNode{}
}
n.edges = nil // deletes the entire subtree
// Check if we should merge the parent's other child
if parent != nil && parent != t.root && len(parent.edges) == 1 && !parent.isLeaf() {
parent.mergeChild()
}
t.size -= subTreeSize
return subTreeSize
}
// Look for an edge
label := prefix[0]
child := n.getEdge(label)
if child == nil || (!bytes.HasPrefix(child.prefix, prefix) && !bytes.HasPrefix(prefix, child.prefix)) {
return 0
}
// Consume the search prefix
if len(child.prefix) > len(prefix) {
prefix = prefix[len(prefix):]
} else {
prefix = prefix[len(child.prefix):]
}
return t.deletePrefix(n, child, prefix)
}
func (n *node) mergeChild() {
e := n.edges[0]
child := e.node
prefix := make([]byte, 0, len(n.prefix)+len(child.prefix))
prefix = append(prefix, n.prefix...)
prefix = append(prefix, child.prefix...)
n.prefix = prefix
n.leaf = child.leaf
n.edges = child.edges
}
// Get is used to lookup a specific key, returning
// the value and if it was found
func (t *Tree) Get(s []byte) (int, bool) {
t.mu.RLock()
n := t.root
search := s
for {
// Check for key exhaution
if len(search) == 0 {
if n.isLeaf() {
t.mu.RUnlock()
return n.leaf.val, true
}
break
}
// Look for an edge
n = n.getEdge(search[0])
if n == nil {
break
}
// Consume the search prefix
if bytes.HasPrefix(search, n.prefix) {
search = search[len(n.prefix):]
} else {
break
}
}
t.mu.RUnlock()
return 0, false
}
// walkFn is used when walking the tree. Takes a
// key and value, returning if iteration should
// be terminated.
type walkFn func(s []byte, v int) bool
// recursiveWalk is used to do a pre-order walk of a node
// recursively. Returns true if the walk should be aborted
func recursiveWalk(n *node, fn walkFn) bool {
// Visit the leaf values if any
if n.leaf.valid && fn(n.leaf.key, n.leaf.val) {
return true
}
// Recurse on the children
for _, e := range n.edges {
if recursiveWalk(e.node, fn) {
return true
}
}
return false
}
// Minimum is used to return the minimum value in the tree
func (t *Tree) Minimum() ([]byte, int, bool) {
t.mu.RLock()
n := t.root
for {
if n.isLeaf() {
t.mu.RUnlock()
return n.leaf.key, n.leaf.val, true
}
if len(n.edges) > 0 {
n = n.edges[0].node
} else {
break
}
}
t.mu.RUnlock()
return nil, 0, false
}
// Maximum is used to return the maximum value in the tree
func (t *Tree) Maximum() ([]byte, int, bool) {
t.mu.RLock()
n := t.root
for {
if num := len(n.edges); num > 0 {
n = n.edges[num-1].node
continue
}
if n.isLeaf() {
t.mu.RUnlock()
return n.leaf.key, n.leaf.val, true
}
break
}
t.mu.RUnlock()
return nil, 0, false
}