forked from kevinroast/phoria.js
-
Notifications
You must be signed in to change notification settings - Fork 0
/
phoria-renderer.js
1036 lines (928 loc) · 41.6 KB
/
phoria-renderer.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**
* @fileoverview phoria - Scene renderers. Canvas renderer and prototype Software renderer.
* @author Kevin Roast
* @date 14th April 2013
*/
(function() {
"use strict";
/**
* Base Renderer that defines helper functions used by specific rendering classes.
*/
Phoria.Renderer = function()
{
};
Phoria.Renderer.prototype = {
// {boolean} true to sort the objects in the scene by average Z coordinate, false to render the list without sorting
sort: true,
/**
* Sort the list of objects in the scene by average Z coordinate. Prepares the flattened render
* list to be rendered object by object using the painters algorithm.
*
* @param scene {Phoria.Scene}
*/
sortObjects: function sortObjects(scene)
{
// calculate and sort objects in average Z order
if (this.sort)
{
for (var n=0,obj; n<scene.renderlist.length; n++)
{
// ensure we have an average z coord for the objects to test
obj = scene.renderlist[n];
switch (obj.style.objectsortmode)
{
case "sorted":
// get average z coord - special case for particles with single coordinate
if (obj._coords.length === 1)
{
obj._averagez = obj._coords[0][2];
}
else
{
obj._averagez = Phoria.Util.averageObjectZ(obj._coords);
}
break;
case "front":
// to the front - remember the Z direction is reversed
obj._averagez = Number.MIN_VALUE;
break;
case "back":
default:
// to the back - remember the Z direction is reversed
obj._averagez = Number.MAX_VALUE;
break;
}
}
scene.renderlist.sort(function sortObjectsZ(a, b) {
return (a._averagez < b._averagez ? 1 : -1);
});
}
},
/**
* Calculate brightness for the normal based on a set of lights
*
* @param position {vec3} Position of the source polygon e.g. vertex or average poly point
* @param normal {vec3} Normal to calculate brightness against
* @param scene {Phoria.Scene} Scene - lights and current camera position are queried from here
* @param obj {Phoria.Entity} Object - style is used for diffuse/specular calculations
* @return RGB float component array for final brightness - values added to current values
*/
calcNormalBrightness: function calcNormalBrightness(position, normal, scene, obj)
{
var rgb = [0.0,0.0,0.0],
lights = scene.lights;
for (var e=0, light, brightness; e<lights.length; e++)
{
light = lights[e];
if (light instanceof Phoria.DistantLight)
{
// Distant lights have no "position", just a direction - they light the world with parallel rays
// from an infinitely distant location - closest example is light from the sun when overhead
// note that light worlddirection is precalculated as negative.
var dotVP = vec3.dot(normal, light.worlddirection);
// don't waste any more time calculating if the dot product is negative i.e. > 90 degrees
if (dotVP <= 0) continue;
// combine light intensity with dot product and object diffuse value
brightness = dotVP * light.intensity * obj.style.diffuse;
}
else if (light instanceof Phoria.PointLight)
{
// Point lights have a position and a fall-off known as attenuation
// distance falloff calculation - each light is additive to the total
var vecToLight = vec3.subtract(vec3.create(), position, light.worldposition),
distance = vec3.length(vecToLight),
attenuation;
vec3.normalize(vecToLight, vecToLight);
var dotVP = vec3.dot(normal, vec3.negate(vecToLight, vecToLight));
// don't waste any more time calculating if the dot product is negative i.e. > 90 degrees
if (dotVP <= 0) continue;
switch (light.attenuationFactor)
{
default:
case "none":
attenuation = light.attenuation;
break;
case "linear":
attenuation = light.attenuation * distance;
break;
case "squared":
attenuation = light.attenuation * distance * distance;
break;
}
// Optional specular highlight calculation
if (obj.style.specular !== 0)
{
var halfV = vec3.add(vec3.create(), vecToLight, scene._cameraPosition),
dotHV = vec3.dot(normal, vec3.normalize(halfV, halfV)),
pf = Math.pow(dotHV, obj.style.specular) * light.intensity / attenuation;
rgb[0] += pf * light.color[0];
rgb[1] += pf * light.color[1];
rgb[2] += pf * light.color[2];
}
brightness = obj.style.diffuse * dotVP * light.intensity / attenuation;
}
// apply each colour component based on light levels (0.0 to 1.0)
rgb[0] += brightness * light.color[0];
rgb[1] += brightness * light.color[1];
rgb[2] += brightness * light.color[2];
}
return rgb;
},
/**
* Calculate brightness for the position based on a set of lights. It is assumed the entity at the position
* has no normal vector i.e. it is a point in space only.
*
* @param position {vec3} Position of the source polygon e.g. vertex or average poly point
* @param lights {Array} Array of light entities to process
* @return RGB float component array for final brightness - values added to current values
*/
calcPositionBrightness: function calcPositionBrightness(position, lights)
{
var rgb = [0.0,0.0,0.0];
for (var e=0, light, brightness; e<lights.length; e++)
{
light = lights[e];
if (light instanceof Phoria.DistantLight)
{
// Distant lights have no "position"
brightness = light.intensity;
}
else if (light instanceof Phoria.PointLight)
{
// Point lights have a position and a fall-off known as attenuation
var vecToLight = vec3.subtract(vec3.create(), position, light.worldposition),
distance = vec3.length(vecToLight),
attenuation;
vec3.normalize(vecToLight, vecToLight);
switch (light.attenuationFactor)
{
case "linear":
attenuation = light.attenuation * distance;
break;
case "squared":
attenuation = light.attenuation * distance * distance;
break;
default:
case "none":
attenuation = light.attenuation;
break;
}
// NOTE: increasing attenuation to try to light wires similar brightness to polygons that
// are lit by the same light - other options would be to properly calculate the lighting
// normal based on the polygons that share the edges - this would mean more complicated
// object descriptions - but provide much more accurate wireframe/point lighting...
brightness = light.intensity / (attenuation * 2);
}
// apply each colour component based on light levels (0.0 to 1.0)
rgb[0] += brightness * light.color[0];
rgb[1] += brightness * light.color[1];
rgb[2] += brightness * light.color[2];
}
return rgb;
},
/**
* Inflate the vertices of a polygon - see inflatePolygonFull() below for a richer impl - this
* algorithm is not quite as neat and suffers when the camera lines up exactly with perpendicular
* edges - however it is much, much faster.
*/
inflatePolygon: function inflatePolygon(vertices, coords, pixels)
{
pixels = pixels || 0.5;
var inflatedVertices = new Array(vertices.length);
for (var i=0; i<vertices.length; i++)
{
inflatedVertices[i] = [ coords[vertices[i]][0], coords[vertices[i]][1] ];
}
for (var i=0, j=vertices.length,k,x1,y1,x2,y2,dx,dy,len; i<j; i++)
{
k = (i < j - 1) ? (i+1) : 0;
x1 = inflatedVertices[i][0];
y1 = inflatedVertices[i][1];
x2 = inflatedVertices[k][0];
y2 = inflatedVertices[k][1];
var x = x2 - x1, y = y2 - y1,
det = x * x + y * y, idet;
if (det === 0) det === Phoria.EPSILON;
idet = pixels / Math.sqrt(det);
x *= idet; y *= idet;
inflatedVertices[i][0] -= x;
inflatedVertices[i][1] -= y;
inflatedVertices[k][0] += x;
inflatedVertices[k][1] += y;
}
return inflatedVertices;
},
/**
* Inflate polygon by 0.5 screen pixels to cover cracks generates by the canvas 2D shape fill convention.
* see http://stackoverflow.com/questions/3749678/expand-fill-of-convex-polygon
* and http://stackoverflow.com/questions/1109536/an-algorithm-for-inflating-deflating-offsetting-buffering-polygons
* This neat routine means that the gaps between polygons seen in other Canvas based renders are not present. It adds
* a few percent overhead in CPU processing, but that is much less than the canvas overhead of multiple fill() or other
* techniques commonly used to hide the polygon cracks. Also the multiple fill or fill then stroke techniques will not
* work with textured polygons.
*/
inflatePolygonFull: function inflatePolygonFull(vertices, coords, pixels)
{
pixels = pixels || 0.5;
// generate vertices of parallel edges
var pedges = [], inflatedVertices = new Array(vertices.length);
for (var i=0, j=vertices.length, x1,y1,x2,y2,dx,dy,len; i<j; i++)
{
// collect an edge
x1 = coords[vertices[i]][0];
y1 = coords[vertices[i]][1];
if (i < j - 1)
{
x2 = coords[vertices[i+1]][0];
y2 = coords[vertices[i+1]][1];
}
else
{
x2 = coords[vertices[0]][0];
y2 = coords[vertices[0]][1];
}
// compute outward facing normal vector - and normalise the length
dx = y2 - y1;
dy = -(x2 - x1);
len = Math.sqrt(dx * dx + dy * dy);
dx /= len;
dy /= len;
// multiply by the distance to the parallel edge
dx *= pixels;
dy *= pixels;
// generate and store parallel edge
pedges.push({x: x1 + dx, y: y1 + dy});
pedges.push({x: x2 + dx, y: y2 + dy});
}
// calculate intersections to build new screen coords for inflated poly
for (var i=0, j=vertices.length, vec; i<j; i++)
{
if (i === 0)
{
vec = this.intersection(pedges[(j-1) * 2], pedges[(j-1) * 2 + 1], pedges[0], pedges[1]);
}
else
{
vec = this.intersection(pedges[(i-1) * 2], pedges[(i-1) * 2 + 1], pedges[i * 2], pedges[i * 2 + 1]);
}
// handle edge case (haha) where inflated polygon vertex edges jump towards infinity
if (Math.abs(vec[0] - coords[vertices[i]][0]) > 1.5 || Math.abs(vec[1] - coords[vertices[i]][1]) > 1.5)
{
// reset to original coordinates
vec[0] = coords[vertices[i]][0];
vec[1] = coords[vertices[i]][1];
}
inflatedVertices[i] = vec;
}
return inflatedVertices;
},
intersection: function intersection(line0v0, line0v1, line1v0, line1v1)
{
var a1 = line0v1.x - line0v0.x,
b1 = line1v0.x - line1v1.x,
c1 = line1v0.x - line0v0.x,
a2 = line0v1.y - line0v0.y,
b2 = line1v0.y - line1v1.y,
c2 = line1v0.y - line0v0.y,
t = (b1*c2 - b2*c1) / (a2*b1 - a1*b2);
return [
line0v0.x + t * (line0v1.x - line0v0.x),
line0v0.y + t * (line0v1.y - line0v0.y)
];
}
};
})();
(function() {
"use strict";
/**
* CanvasRenderer will output the scene onto the supplied canvas context using the 2D drawing context. Standard canvas
* 2D operations such as drawing arcs, lines and filled shapes will be used to render the 3D entities. A lot of the rendering
* techniques are based on the work done in my first JavaScript 3D library 'K3D' see bit.ly/canvask3d
*/
Phoria.CanvasRenderer = function(canvas)
{
Phoria.CanvasRenderer.superclass.constructor.call(this);
this.canvas = canvas;
this.ctx = canvas.getContext('2d');
return this;
};
Phoria.Util.extend(Phoria.CanvasRenderer, Phoria.Renderer, {
// {Object} canvas to use as the output context
canvas: null,
ctx: null,
/**
* Render the given scene to the canvas context
*
* @param {Phoria.Scene} scene The scene to render - processed by scene.modelView()
* @param {function} fnClear Optional canvas clearing strategy function - otherwise clearRect() is used
*/
render: function render(scene, fnClear)
{
this.sortObjects(scene);
// clear the canvas before rendering begins - optional clearing function can be supplied
var ctx = this.ctx;
if (!fnClear)
{
ctx.clearRect(0, 0, this.canvas.width, this.canvas.height);
}
else
{
fnClear.call(this, ctx);
}
// scene performs all local, world and projection calculations and flattens the rendering list ready for rendering.
for (var n=0, obj; n<scene.renderlist.length; n++)
{
obj = scene.renderlist[n];
ctx.save();
if (obj.style.compositeOperation)
{
ctx.globalCompositeOperation = obj.style.compositeOperation;
}
switch (obj.style.drawmode)
{
case "solid":
{
// ensure line width is set if appropriate fillmode is being used
if (obj.style.fillmode === "fillstroke" || obj.style.fillmode === "hiddenline") ctx.lineWidth = 1.0;
// render the pre-sorted polygons
for (var i=0; i<obj.polygons.length; i++)
{
this.renderPolygon(ctx, obj, scene, obj.polygons[i]);
}
break;
}
case "wireframe":
{
ctx.lineWidth = obj.style.linewidth;
ctx.globalAlpha = obj.style.opacity;
if (obj.style.shademode === "plain")
{
ctx.strokeStyle = "rgb(" + obj.style.color[0] + "," + obj.style.color[1] + "," + obj.style.color[2] + ")";
ctx.beginPath();
for (var i=0; i<obj.edges.length; i++)
{
this.renderEdge(ctx, obj, scene, obj.edges[i]);
}
ctx.closePath();
ctx.stroke();
}
else
{
for (var i=0; i<obj.edges.length; i++)
{
this.renderEdge(ctx, obj, scene, obj.edges[i]);
}
}
break;
}
case "point":
{
// assert to ensure that the texture image referenced by the 'sprite' index exists
if (obj.style.shademode === "sprite" && obj.style.sprite !== undefined)
{
if (!obj.textures)
{
throw new Error("Entity has shademode 'sprite' but no textures defined on parent emitter.");
}
if (obj.style.sprite > obj.textures.length - 1)
{
throw new Error("Entity has shademode 'sprite' index but references missing texture on parent emitter.")
}
}
ctx.globalAlpha = obj.style.opacity;
var coords = obj._coords;
if (obj.style.shademode === "plain")
{
ctx.fillStyle = "rgb(" + obj.style.color[0] + "," + obj.style.color[1] + "," + obj.style.color[2] + ")";
}
for (var i=0; i<coords.length; i++)
{
this.renderPoint(ctx, obj, scene, coords[i], i);
}
}
}
ctx.restore();
}
},
renderPoint: function renderPoint(ctx, obj, scene, coord, index)
{
// perform clip of point if vertex has been marked for clipping
if (obj._clip[index]) return;
var w = obj.style.linewidth;
if (obj.style.linescale !== 0)
{
// use the perspective divisor to calculate line width scaling
// try to keep this calculation in sync with scene point clipOffset calculation
w = (obj.style.linewidth * obj.style.linescale * scene._perspectiveScale) / obj._coords[index][3];
}
switch (obj.style.shademode)
{
case "plain":
{
ctx.beginPath();
ctx.arc(coord[0], coord[1], w, 0, Phoria.TWOPI, true);
ctx.closePath();
ctx.fill();
break;
}
case "sprite":
{
if (obj.style.sprite !== undefined)
{
ctx.drawImage(obj.textures[obj.style.sprite], coord[0]-w, coord[1]-w, w+w, w+w);
}
break;
}
case "callback":
{
// optional rendering callback functions
if (obj.onRenderHandlers !== null)
{
for (var h=0; h<obj.onRenderHandlers.length; h++)
{
obj.onRenderHandlers[h].call(obj, ctx, coord[0], coord[1], w);
}
}
break;
}
case "lightsource":
{
// lighting calc
var rgb = this.calcPositionBrightness(obj._worldcoords[index], scene.lights);
ctx.fillStyle = "rgb(" + Math.min(Math.ceil(rgb[0] * obj.style.color[0]),255) + "," +
Math.min(Math.ceil(rgb[1] * obj.style.color[1]),255) + "," +
Math.min(Math.ceil(rgb[2] * obj.style.color[2]),255) + ")";
ctx.beginPath();
ctx.arc(coord[0], coord[1], w, 0, Phoria.TWOPI, true);
ctx.closePath();
ctx.fill();
break;
}
}
},
renderEdge: function renderEdge(ctx, obj, scene, edge)
{
// perform clip of edge if all vertices have been marked for clipping
if (obj._clip[edge.a] & obj._clip[edge.b]) return;
var coords = obj._coords;
if (obj.style.linescale !== 0)
{
// use the perspective divisor to calculate line width scaling
ctx.lineWidth = ((obj.style.linewidth * obj.style.linescale) / ((obj._coords[edge.a][3] + obj._coords[edge.b][3]) * 0.5)) * scene._perspectiveScale;
}
// lighting calc
if (obj.style.shademode === "lightsource")
{
var edgea = obj._worldcoords[edge.a], edgeb = obj._worldcoords[edge.b],
position = vec3.fromValues((edgea[0] + edgeb[0]) * 0.5, (edgea[1] + edgeb[1]) * 0.5, (edgea[2] + edgeb[2]) * 0.5);
var rgb = this.calcPositionBrightness(position, scene.lights);
ctx.beginPath();
ctx.strokeStyle = "rgb(" + Math.min(Math.ceil(rgb[0] * obj.style.color[0]),255) + "," +
Math.min(Math.ceil(rgb[1] * obj.style.color[1]),255) + "," +
Math.min(Math.ceil(rgb[2] * obj.style.color[2]),255) + ")";
// draw an edge
ctx.moveTo(coords[edge.a][0], coords[edge.a][1]);
ctx.lineTo(coords[edge.b][0], coords[edge.b][1]);
ctx.closePath();
ctx.stroke();
}
else
{
// draw an edge
ctx.moveTo(coords[edge.a][0], coords[edge.a][1]);
ctx.lineTo(coords[edge.b][0], coords[edge.b][1]);
}
},
renderPolygon: function renderPolygon(ctx, obj, scene, poly)
{
var coords = obj._coords,
clip = obj._clip,
vertices = poly.vertices,
color = poly.color ? poly.color : obj.style.color,
fillStyle = null, rgb, emit = 0.0, opacity = (poly.opacity ? poly.opacity : obj.style.opacity);
// clip of poly if all vertices have been marked for clipping
var clippoly = 1;
for (var i=0; i<vertices.length; i++)
{
clippoly &= clip[vertices[i]];
}
if (clippoly) return;
// hidden surface removal - use area sign in screen space calculation rather than normal to camera
// as normal dot test will only work for orthogonal projection not perspective projection
if (!obj.style.doublesided &&
((coords[vertices[0]][0]*coords[vertices[1]][1] - coords[vertices[1]][0]*coords[vertices[0]][1]) +
(coords[vertices[1]][0]*coords[vertices[2]][1] - coords[vertices[2]][0]*coords[vertices[1]][1]) +
(coords[vertices[2]][0]*coords[vertices[0]][1] - coords[vertices[0]][0]*coords[vertices[2]][1]) < 0)) return;
// generate fill style based on lighting mode
switch (obj.style.shademode)
{
case "plain":
{
if (obj.style.texture === undefined && poly.texture === undefined)
{
fillStyle = color[0] + "," + color[1] + "," + color[2];
}
break;
}
case "lightsource":
{
// this performs a pass for each light - a simple linear-additive lighting model
rgb = this.calcNormalBrightness(Phoria.Util.averagePolyVertex(vertices, obj._worldcoords), poly._worldnormal, scene, obj);
if (poly.emit || obj.style.emit)
{
emit = poly.emit ? poly.emit : obj.style.emit;
}
// generate style string for canvas fill (integers in 0-255 range)
fillStyle = Math.min(Math.ceil(rgb[0]*color[0] + color[0]*emit),255) + "," +
Math.min(Math.ceil(rgb[1]*color[1] + color[1]*emit),255) + "," +
Math.min(Math.ceil(rgb[2]*color[2] + color[1]*emit),255);
break;
}
}
// render the polygon - textured or one of the solid fill modes
ctx.save();
if (obj.style.texture !== undefined || poly.texture !== undefined)
{
var bitmap = obj.textures[ poly.texture !== undefined ? poly.texture : obj.style.texture ],
tx0, ty0, tx1, ty1, tx2, ty2;
var fRenderTriangle = function(vs, sx0, sy0, sx1, sy1, sx2, sy2)
{
var x0 = vs[0][0], y0 = vs[0][1],
x1 = vs[1][0], y1 = vs[1][1],
x2 = vs[2][0], y2 = vs[2][1];
ctx.beginPath();
ctx.moveTo(x0, y0);
ctx.lineTo(x1, y1);
ctx.lineTo(x2, y2);
ctx.closePath();
ctx.clip();
// Textured triangle transformation code originally by Thatcher Ulrich
// TODO: figure out if drawImage goes faster if we specify the rectangle that bounds the source coords.
// TODO: this is far from perfect - due to perspective corrected texture mapping issues see:
// http://tulrich.com/geekstuff/canvas/perspective.html
// collapse terms
var denom = denom = 1.0 / (sx0 * (sy2 - sy1) - sx1 * sy2 + sx2 * sy1 + (sx1 - sx2) * sy0);
// calculate context transformation matrix
var m11 = - (sy0 * (x2 - x1) - sy1 * x2 + sy2 * x1 + (sy1 - sy2) * x0) * denom,
m12 = (sy1 * y2 + sy0 * (y1 - y2) - sy2 * y1 + (sy2 - sy1) * y0) * denom,
m21 = (sx0 * (x2 - x1) - sx1 * x2 + sx2 * x1 + (sx1 - sx2) * x0) * denom,
m22 = - (sx1 * y2 + sx0 * (y1 - y2) - sx2 * y1 + (sx2 - sx1) * y0) * denom,
dx = (sx0 * (sy2 * x1 - sy1 * x2) + sy0 * (sx1 * x2 - sx2 * x1) + (sx2 * sy1 - sx1 * sy2) * x0) * denom,
dy = (sx0 * (sy2 * y1 - sy1 * y2) + sy0 * (sx1 * y2 - sx2 * y1) + (sx2 * sy1 - sx1 * sy2) * y0) * denom;
ctx.transform(m11, m12, m21, m22, dx, dy);
// Draw the whole texture image. Transform and clip will map it onto the correct output polygon.
ctx.globalAlpha = opacity;
ctx.drawImage(bitmap, 0, 0);
};
if (fillStyle !== null)
{
// convert RGB to grey scale level
var alpha = rgb[0]*0.3 + rgb[1]*0.6 + rgb[2]*0.1;
if (alpha > 1.0) alpha = 1.0;
// fix to N decimal places to avoid eExp notation on toString()!
ctx.fillStyle = "rgba(" + fillStyle + "," + (1.0 - alpha).toFixed(3) + ")";
}
// we can only deal with triangles for texturing - a quad must be split into two triangles
// TODO: needs a triangle subdivision algorithm for > 4 verticies
if (vertices.length === 3)
{
tx0 = 0, ty0 = 0, tx1 = bitmap.width, ty1 = 0, tx2 = bitmap.width, ty2 = bitmap.height;
if (poly.uvs !== undefined)
{
tx0 = bitmap.width * poly.uvs[0]; ty0 = bitmap.height * poly.uvs[1];
tx1 = bitmap.width * poly.uvs[2]; ty1 = bitmap.height * poly.uvs[3];
tx2 = bitmap.width * poly.uvs[4]; ty2 = bitmap.height * poly.uvs[5];
}
// TODO: Chrome does not need the texture poly inflated!
var inflatedVertices = this.inflatePolygon(vertices, coords, 0.5);
fRenderTriangle.call(this, inflatedVertices, tx0, ty0, tx1, ty1, tx2, ty2);
// apply optional color fill to shade and light the texture image
if (fillStyle !== null)
{
ctx.fill();
}
}
else if (vertices.length === 4)
{
tx0 = 0, ty0 = 0, tx1 = bitmap.width, ty1 = 0, tx2 = bitmap.width, ty2 = bitmap.height;
if (poly.uvs !== undefined)
{
tx0 = bitmap.width * poly.uvs[0]; ty0 = bitmap.height * poly.uvs[1];
tx1 = bitmap.width * poly.uvs[2]; ty1 = bitmap.height * poly.uvs[3];
tx2 = bitmap.width * poly.uvs[4]; ty2 = bitmap.height * poly.uvs[5];
}
ctx.save();
// TODO: Chrome does not need the texture poly inflated!
var inflatedVertices = this.inflatePolygon(vertices.slice(0, 3), coords, 0.5);
fRenderTriangle.call(this, inflatedVertices, tx0, ty0, tx1, ty1, tx2, ty2);
ctx.restore();
tx0 = bitmap.width, ty0 = bitmap.height, tx1 = 0, ty1 = bitmap.height, tx2 = 0, ty2 = 0;
if (poly.uvs !== undefined)
{
tx0 = bitmap.width * poly.uvs[4]; ty0 = bitmap.height * poly.uvs[5];
tx1 = bitmap.width * poly.uvs[6]; ty1 = bitmap.height * poly.uvs[7];
tx2 = bitmap.width * poly.uvs[0]; ty2 = bitmap.height * poly.uvs[1];
}
ctx.save();
var v = new Array(3);
v[0] = vertices[2];
v[1] = vertices[3];
v[2] = vertices[0];
// TODO: Chrome does not need the texture poly inflated!
inflatedVertices = this.inflatePolygon(v, coords, 0.5);
fRenderTriangle.call(this, inflatedVertices, tx0, ty0, tx1, ty1, tx2, ty2);
ctx.restore();
// apply optional color fill to shade and light the texture image
if (fillStyle !== null)
{
// TODO: better to inflate again or fill two tris as above?
inflatedVertices = this.inflatePolygon(vertices, coords, 0.75);
ctx.beginPath();
ctx.moveTo(inflatedVertices[0][0], inflatedVertices[0][1]);
for (var i=1, j=inflatedVertices.length; i<j; i++)
{
ctx.lineTo(inflatedVertices[i][0], inflatedVertices[i][1]);
}
ctx.closePath();
ctx.globalAlpha = opacity;
ctx.fill();
}
}
}
else
{
// solid colour fill
if (obj.style.fillmode === "inflate")
{
// inflate the polygon screen coords to cover the 0.5 pixel cracks between canvas fill()ed polygons
var inflatedVertices = this.inflatePolygon(vertices, coords, 0.5);
ctx.beginPath();
ctx.moveTo(inflatedVertices[0][0], inflatedVertices[0][1]);
for (var i=1, j=vertices.length; i<j; i++)
{
ctx.lineTo(inflatedVertices[i][0], inflatedVertices[i][1]);
}
ctx.closePath();
}
else
{
ctx.beginPath();
// move to first point in the polygon
ctx.moveTo(coords[vertices[0]][0], coords[vertices[0]][1]);
for (var i=1; i<vertices.length; i++)
{
// move to each additional point
ctx.lineTo(coords[vertices[i]][0], coords[vertices[i]][1]);
}
// no need to plot back to first point - as path closes shape automatically
ctx.closePath();
}
fillStyle = "rgba(" + fillStyle + "," + opacity + ")";
switch (obj.style.fillmode)
{
case "fill":
// single fill - fastest but leaves edge lines
ctx.fillStyle = fillStyle;
ctx.fill();
break;
case "filltwice":
// double fill causes "overdraw" towards edges - slightly slower
// but removes enough of the cracks for dense objects and small faces
ctx.fillStyle = fillStyle;
ctx.fill();
ctx.fill();
break;
case "inflate":
// inflate (also called 'buffering') the polygon in 2D by a small ammount
// and then a single fill can be used - increase in pre calculation time
ctx.fillStyle = fillStyle;
ctx.fill();
break;
case "fillstroke":
// single fill - followed by a stroke line - nicer edge fill but slower
ctx.fillStyle = fillStyle;
ctx.fill();
ctx.strokeStyle = fillStyle;
ctx.stroke();
break;
case "hiddenline":
// stroke only - to produce hidden line wire effect
ctx.strokeStyle = fillStyle;
ctx.stroke();
break;
}
}
ctx.restore();
}
});
})();
(function() {
"use strict";
/**
* Software renderer is based on the work by mr.doob which in turn is based on the work here:
* http://devmaster.net/forums/topic/1145-advanced-rasterization/
* For lots of small polygons in a very fast JavaScript VM (V8 on Chrome) then it can be faster than
* standard canvas poly drawing - but does not have anti-aliasing and is notably slower for large polygons.
*/
Phoria.SoftwareRenderer = function(canvas)
{
Phoria.SoftwareRenderer.superclass.constructor.call(this);
this.canvas = canvas;
this.ctx = canvas.getContext('2d');
this._imagedata = this.ctx.getImageData(0, 0, this.canvas.width, this.canvas.height);
this._data = this._imagedata.data;
return this;
};
Phoria.Util.extend(Phoria.SoftwareRenderer, Phoria.Renderer, {
// canvas to use as the output context
canvas: null,
ctx: null,
_imagedata: null,
_data: null,
/**
* Render the given scene to the canvas context
*
* @param {Phoria.Scene} scene The scene to render - processed by scene.modelView()
*/
render: function render(scene)
{
this.sortObjects(scene);
// clear the canvas before rendering begins
// TODO: optimize with prevrect - see SoftwareRenderer
this.clearCanvasRect(0, 0, this.canvas.width, this.canvas.height);
//this.ctx.clearRect(0, 0, this.canvas.width, this.canvas.height);
//this._imagedata = this.ctx.getImageData(0, 0, this.canvas.width, this.canvas.height);
//this._data = this._imagedata.data;
// scene performs all local, world and projection calculations and flattens the rendering list ready for rendering.
for (var n=0, obj; n<scene.renderlist.length; n++)
{
obj = scene.renderlist[n];
switch (obj.style.drawmode)
{
case "solid":
{
// render the pre-sorted polygons
var rendercount = 0;
for (var i=0; i<obj.polygons.length; i++)
{
if (this.renderPolygon(null, obj, scene, obj.polygons[i])) rendercount++;
}
//if (Date.now() % 25 === 0) console.log(rendercount);
break;
}
}
}
// TODO: optimize with prev rect - see SoftwareRenderer
this.ctx.putImageData(this._imagedata, 0, 0, 0, 0, this.canvas.width, this.canvas.height);
},
clearCanvasRect: function clearCanvasRect(xmin, ymin, xmax, ymax)
{
// TODO: optimize with prevrect - see SoftwareRenderer
var offset = (xmin + ymin * this.canvas.width - 1) * 4 + 3,
linestep = (this.canvas.width - (xmax - xmin)) * 4,
data = this._data;
for (var y = ymin; y < ymax; y++)
{
for (var x = xmin; x < xmax; x++)
{
data[offset += 4] = 0;
}
offset += linestep;
}
},
renderPolygon: function renderPolygon(ctx, obj, scene, poly)
{
var coords = obj._coords,
clip = obj._clip,
vertices = poly.vertices,
color = poly.color ? poly.color : obj.style.color;
// clip of poly if all vertices have been marked for clipping
var clippoly = 1;
for (var i=0; i<vertices.length; i++)
{
clippoly &= clip[vertices[i]];
}
if (clippoly) return false;
// hidden surface removal
if (!obj.style.doublesided &&
((coords[vertices[0]][0]*coords[vertices[1]][1] - coords[vertices[1]][0]*coords[vertices[0]][1]) +
(coords[vertices[1]][0]*coords[vertices[2]][1] - coords[vertices[2]][0]*coords[vertices[1]][1]) +
(coords[vertices[2]][0]*coords[vertices[0]][1] - coords[vertices[0]][0]*coords[vertices[2]][1]) < 0)) return;
// generate fill style based on lighting mode
var rgb;
switch (obj.style.shademode)
{
case "plain":
{
rgb = new Array(3);
rgb[0] = color[0];
rgb[1] = color[1];
rgb[2] = color[2];
break;
}
case "lightsource":
{
// perform a pass for each light - a simple linear-additive lighting model
rgb = this.calcNormalBrightness(Phoria.Util.averagePolyVertex(vertices, obj._worldcoords), poly._worldnormal, scene, obj);
// generate final RGB
rgb[0] = Math.ceil(Math.min(rgb[0]*color[0], 255));
rgb[1] = Math.ceil(Math.min(rgb[1]*color[1], 255));
rgb[2] = Math.ceil(Math.min(rgb[2]*color[2], 255));
break;
}
}
// render a triangle in software to a buffer
this.drawTriangle(
coords[vertices[2]][0], coords[vertices[2]][1],
coords[vertices[1]][0], coords[vertices[1]][1],
coords[vertices[0]][0], coords[vertices[0]][1],
rgb[0], rgb[1], rgb[2]);
// handle quad - split into second triangle
// TODO: polygon subvision is needed for >4 verts if this renderer is used...
if (vertices.length === 4)
{
this.drawTriangle(
coords[vertices[0]][0], coords[vertices[0]][1],
coords[vertices[3]][0], coords[vertices[3]][1],
coords[vertices[2]][0], coords[vertices[2]][1],
rgb[0], rgb[1], rgb[2]);
}
return true;
},
drawTriangle: function drawTriangle(x1, y1, x2, y2, x3, y3, r, g, b)
{
// http://devmaster.net/forums/topic/1145-advanced-rasterization/
// 28.4 fixed-point coordinates
var x1 = Math.round( 16 * x1 ),
x2 = Math.round( 16 * x2 ),
x3 = Math.round( 16 * x3 ),
y1 = Math.round( 16 * y1 ),
y2 = Math.round( 16 * y2 ),
y3 = Math.round( 16 * y3 );
// Deltas
var dx12 = x1 - x2,
dx23 = x2 - x3,
dx31 = x3 - x1,
dy12 = y1 - y2,
dy23 = y2 - y3,
dy31 = y3 - y1;
// Fixed-point deltas
var fdx12 = dx12 << 4,
fdx23 = dx23 << 4,
fdx31 = dx31 << 4,
fdy12 = dy12 << 4,
fdy23 = dy23 << 4,
fdy31 = dy31 << 4;
var canvasWidth = this.canvas.width,
canvasHeight = this.canvas.height,
data = this._data;
// Bounding rectangle
var xmin = Math.max( ( Math.min( x1, x2, x3 ) + 0xf ) >> 4, 0 ),
xmax = Math.min( ( Math.max( x1, x2, x3 ) + 0xf ) >> 4, canvasWidth ),
ymin = Math.max( ( Math.min( y1, y2, y3 ) + 0xf ) >> 4, 0 ),
ymax = Math.min( ( Math.max( y1, y2, y3 ) + 0xf ) >> 4, canvasHeight );
if (xmax <= xmin || ymax <= ymin) return;
//rectx1 = Math.min( xmin, rectx1 );
//rectx2 = Math.max( xmax, rectx2 );
//recty1 = Math.min( ymin, recty1 );
//recty2 = Math.max( ymax, recty2 );
// Constant part of half-edge functions
var c1 = dy12 * x1 - dx12 * y1,
c2 = dy23 * x2 - dx23 * y2,
c3 = dy31 * x3 - dx31 * y3;
// Correct for fill convention
if ( dy12 < 0 || ( dy12 == 0 && dx12 > 0 ) ) c1++;