forked from rivo/tview
-
Notifications
You must be signed in to change notification settings - Fork 0
/
application.go
766 lines (675 loc) · 20.5 KB
/
application.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
package tview
import (
"sync"
"time"
"github.com/gdamore/tcell/v2"
)
const (
// The size of the event/update/redraw channels.
queueSize = 100
// The minimum time between two consecutive redraws.
redrawPause = 50 * time.Millisecond
)
// DoubleClickInterval specifies the maximum time between clicks to register a
// double click rather than click.
var DoubleClickInterval = 500 * time.Millisecond
// MouseAction indicates one of the actions the mouse is logically doing.
type MouseAction int16
// Available mouse actions.
const (
MouseMove MouseAction = iota
MouseLeftDown
MouseLeftUp
MouseLeftClick
MouseLeftDoubleClick
MouseMiddleDown
MouseMiddleUp
MouseMiddleClick
MouseMiddleDoubleClick
MouseRightDown
MouseRightUp
MouseRightClick
MouseRightDoubleClick
MouseScrollUp
MouseScrollDown
MouseScrollLeft
MouseScrollRight
)
// queuedUpdate represented the execution of f queued by
// Application.QueueUpdate(). If "done" is not nil, it receives exactly one
// element after f has executed.
type queuedUpdate struct {
f func()
done chan struct{}
}
// Application represents the top node of an application.
//
// It is not strictly required to use this class as none of the other classes
// depend on it. However, it provides useful tools to set up an application and
// plays nicely with all widgets.
//
// The following command displays a primitive p on the screen until Ctrl-C is
// pressed:
//
// if err := tview.NewApplication().SetRoot(p, true).Run(); err != nil {
// panic(err)
// }
type Application struct {
sync.RWMutex
// The application's screen. Apart from Run(), this variable should never be
// set directly. Always use the screenReplacement channel after calling
// Fini(), to set a new screen (or nil to stop the application).
screen tcell.Screen
// The primitive which currently has the keyboard focus.
focus Primitive
// The root primitive to be seen on the screen.
root Primitive
// Whether or not the application resizes the root primitive.
rootFullscreen bool
// Set to true if mouse events are enabled.
enableMouse bool
// An optional capture function which receives a key event and returns the
// event to be forwarded to the default input handler (nil if nothing should
// be forwarded).
inputCapture func(event *tcell.EventKey) *tcell.EventKey
// An optional callback function which is invoked just before the root
// primitive is drawn.
beforeDraw func(screen tcell.Screen) bool
// An optional callback function which is invoked after the root primitive
// was drawn.
afterDraw func(screen tcell.Screen)
// Used to send screen events from separate goroutine to main event loop
events chan tcell.Event
// Functions queued from goroutines, used to serialize updates to primitives.
updates chan queuedUpdate
// An object that the screen variable will be set to after Fini() was called.
// Use this channel to set a new screen object for the application
// (screen.Init() and draw() will be called implicitly). A value of nil will
// stop the application.
screenReplacement chan tcell.Screen
// An optional capture function which receives a mouse event and returns the
// event to be forwarded to the default mouse handler (nil if nothing should
// be forwarded).
mouseCapture func(event *tcell.EventMouse, action MouseAction) (*tcell.EventMouse, MouseAction)
mouseCapturingPrimitive Primitive // A Primitive returned by a MouseHandler which will capture future mouse events.
lastMouseX, lastMouseY int // The last position of the mouse.
mouseDownX, mouseDownY int // The position of the mouse when its button was last pressed.
lastMouseClick time.Time // The time when a mouse button was last clicked.
lastMouseButtons tcell.ButtonMask // The last mouse button state.
}
// NewApplication creates and returns a new application.
func NewApplication() *Application {
return &Application{
events: make(chan tcell.Event, queueSize),
updates: make(chan queuedUpdate, queueSize),
screenReplacement: make(chan tcell.Screen, 1),
}
}
// SetInputCapture sets a function which captures all key events before they are
// forwarded to the key event handler of the primitive which currently has
// focus. This function can then choose to forward that key event (or a
// different one) by returning it or stop the key event processing by returning
// nil.
//
// Note that this also affects the default event handling of the application
// itself: Such a handler can intercept the Ctrl-C event which closes the
// application.
func (a *Application) SetInputCapture(capture func(event *tcell.EventKey) *tcell.EventKey) *Application {
a.inputCapture = capture
return a
}
// GetInputCapture returns the function installed with SetInputCapture() or nil
// if no such function has been installed.
func (a *Application) GetInputCapture() func(event *tcell.EventKey) *tcell.EventKey {
return a.inputCapture
}
// SetMouseCapture sets a function which captures mouse events (consisting of
// the original tcell mouse event and the semantic mouse action) before they are
// forwarded to the appropriate mouse event handler. This function can then
// choose to forward that event (or a different one) by returning it or stop
// the event processing by returning a nil mouse event.
func (a *Application) SetMouseCapture(capture func(event *tcell.EventMouse, action MouseAction) (*tcell.EventMouse, MouseAction)) *Application {
a.mouseCapture = capture
return a
}
// GetMouseCapture returns the function installed with SetMouseCapture() or nil
// if no such function has been installed.
func (a *Application) GetMouseCapture() func(event *tcell.EventMouse, action MouseAction) (*tcell.EventMouse, MouseAction) {
return a.mouseCapture
}
// SetScreen allows you to provide your own tcell.Screen object. For most
// applications, this is not needed and you should be familiar with
// tcell.Screen when using this function.
//
// This function is typically called before the first call to Run(). Init() need
// not be called on the screen.
func (a *Application) SetScreen(screen tcell.Screen) *Application {
if screen == nil {
return a // Invalid input. Do nothing.
}
a.Lock()
if a.screen == nil {
// Run() has not been called yet.
a.screen = screen
a.Unlock()
return a
}
// Run() is already in progress. Exchange screen.
oldScreen := a.screen
a.Unlock()
oldScreen.Fini()
a.screenReplacement <- screen
return a
}
// EnableMouse enables mouse events or disables them (if "false" is provided).
func (a *Application) EnableMouse(enable bool) *Application {
a.Lock()
defer a.Unlock()
if enable != a.enableMouse && a.screen != nil {
if enable {
a.screen.EnableMouse()
} else {
a.screen.DisableMouse()
}
}
a.enableMouse = enable
return a
}
// Run starts the application and thus the event loop. This function returns
// when Stop() was called.
func (a *Application) Run() error {
var (
err, appErr error
lastRedraw time.Time // The time the screen was last redrawn.
redrawTimer *time.Timer // A timer to schedule the next redraw.
)
a.Lock()
// Make a screen if there is none yet.
if a.screen == nil {
a.screen, err = tcell.NewScreen()
if err != nil {
a.Unlock()
return err
}
if err = a.screen.Init(); err != nil {
a.Unlock()
return err
}
if a.enableMouse {
a.screen.EnableMouse()
}
}
// We catch panics to clean up because they mess up the terminal.
defer func() {
if p := recover(); p != nil {
if a.screen != nil {
a.screen.Fini()
}
panic(p)
}
}()
// Draw the screen for the first time.
a.Unlock()
a.draw()
// Separate loop to wait for screen events.
var wg sync.WaitGroup
wg.Add(1)
go func() {
defer wg.Done()
for {
a.RLock()
screen := a.screen
a.RUnlock()
if screen == nil {
// We have no screen. Let's stop.
a.QueueEvent(nil)
break
}
// Wait for next event and queue it.
event := screen.PollEvent()
if event != nil {
// Regular event. Queue.
a.QueueEvent(event)
continue
}
// A screen was finalized (event is nil). Wait for a new scren.
screen = <-a.screenReplacement
if screen == nil {
// No new screen. We're done.
a.QueueEvent(nil)
return
}
// We have a new screen. Keep going.
a.Lock()
a.screen = screen
enableMouse := a.enableMouse
a.Unlock()
// Initialize and draw this screen.
if err := screen.Init(); err != nil {
panic(err)
}
if enableMouse {
screen.EnableMouse()
}
a.draw()
}
}()
// Start event loop.
EventLoop:
for {
select {
case event := <-a.events:
if event == nil {
break EventLoop
}
switch event := event.(type) {
case *tcell.EventKey:
a.RLock()
root := a.root
inputCapture := a.inputCapture
a.RUnlock()
// Intercept keys.
var draw bool
if inputCapture != nil {
event = inputCapture(event)
if event == nil {
a.draw()
continue // Don't forward event.
}
draw = true
}
// Ctrl-C closes the application.
if event.Key() == tcell.KeyCtrlC {
a.Stop()
break
}
// Pass other key events to the root primitive.
if root != nil && root.HasFocus() {
if handler := root.InputHandler(); handler != nil {
handler(event, func(p Primitive) {
a.SetFocus(p)
})
draw = true
}
}
// Redraw.
if draw {
a.draw()
}
case *tcell.EventResize:
if time.Since(lastRedraw) < redrawPause {
if redrawTimer != nil {
redrawTimer.Stop()
}
redrawTimer = time.AfterFunc(redrawPause, func() {
a.events <- event
})
}
a.RLock()
screen := a.screen
a.RUnlock()
if screen == nil {
continue
}
lastRedraw = time.Now()
screen.Clear()
a.draw()
case *tcell.EventMouse:
consumed, isMouseDownAction := a.fireMouseActions(event)
if consumed {
a.draw()
}
a.lastMouseButtons = event.Buttons()
if isMouseDownAction {
a.mouseDownX, a.mouseDownY = event.Position()
}
case *tcell.EventError:
appErr = event
a.Stop()
}
// If we have updates, now is the time to execute them.
case update := <-a.updates:
update.f()
if update.done != nil {
update.done <- struct{}{}
}
}
}
// Wait for the event loop to finish.
wg.Wait()
a.screen = nil
return appErr
}
// fireMouseActions analyzes the provided mouse event, derives mouse actions
// from it and then forwards them to the corresponding primitives.
func (a *Application) fireMouseActions(event *tcell.EventMouse) (consumed, isMouseDownAction bool) {
// We want to relay follow-up events to the same target primitive.
var targetPrimitive Primitive
// Helper function to fire a mouse action.
fire := func(action MouseAction) {
switch action {
case MouseLeftDown, MouseMiddleDown, MouseRightDown:
isMouseDownAction = true
}
// Intercept event.
if a.mouseCapture != nil {
event, action = a.mouseCapture(event, action)
if event == nil {
consumed = true
return // Don't forward event.
}
}
// Determine the target primitive.
var primitive, capturingPrimitive Primitive
if a.mouseCapturingPrimitive != nil {
primitive = a.mouseCapturingPrimitive
targetPrimitive = a.mouseCapturingPrimitive
} else if targetPrimitive != nil {
primitive = targetPrimitive
} else {
primitive = a.root
}
if primitive != nil {
if handler := primitive.MouseHandler(); handler != nil {
var wasConsumed bool
wasConsumed, capturingPrimitive = handler(action, event, func(p Primitive) {
a.SetFocus(p)
})
if wasConsumed {
consumed = true
}
}
}
a.mouseCapturingPrimitive = capturingPrimitive
}
x, y := event.Position()
buttons := event.Buttons()
clickMoved := x != a.mouseDownX || y != a.mouseDownY
buttonChanges := buttons ^ a.lastMouseButtons
if x != a.lastMouseX || y != a.lastMouseY {
fire(MouseMove)
a.lastMouseX = x
a.lastMouseY = y
}
for _, buttonEvent := range []struct {
button tcell.ButtonMask
down, up, click, dclick MouseAction
}{
{tcell.ButtonPrimary, MouseLeftDown, MouseLeftUp, MouseLeftClick, MouseLeftDoubleClick},
{tcell.ButtonMiddle, MouseMiddleDown, MouseMiddleUp, MouseMiddleClick, MouseMiddleDoubleClick},
{tcell.ButtonSecondary, MouseRightDown, MouseRightUp, MouseRightClick, MouseRightDoubleClick},
} {
if buttonChanges&buttonEvent.button != 0 {
if buttons&buttonEvent.button != 0 {
fire(buttonEvent.down)
} else {
fire(buttonEvent.up)
if !clickMoved {
if a.lastMouseClick.Add(DoubleClickInterval).Before(time.Now()) {
fire(buttonEvent.click)
a.lastMouseClick = time.Now()
} else {
fire(buttonEvent.dclick)
a.lastMouseClick = time.Time{} // reset
}
}
}
}
}
for _, wheelEvent := range []struct {
button tcell.ButtonMask
action MouseAction
}{
{tcell.WheelUp, MouseScrollUp},
{tcell.WheelDown, MouseScrollDown},
{tcell.WheelLeft, MouseScrollLeft},
{tcell.WheelRight, MouseScrollRight}} {
if buttons&wheelEvent.button != 0 {
fire(wheelEvent.action)
}
}
return consumed, isMouseDownAction
}
// Stop stops the application, causing Run() to return.
func (a *Application) Stop() {
a.Lock()
defer a.Unlock()
screen := a.screen
if screen == nil {
return
}
a.screen = nil
screen.Fini()
a.screenReplacement <- nil
}
// Suspend temporarily suspends the application by exiting terminal UI mode and
// invoking the provided function "f". When "f" returns, terminal UI mode is
// entered again and the application resumes.
//
// A return value of true indicates that the application was suspended and "f"
// was called. If false is returned, the application was already suspended,
// terminal UI mode was not exited, and "f" was not called.
func (a *Application) Suspend(f func()) bool {
a.RLock()
screen := a.screen
a.RUnlock()
if screen == nil {
return false // Screen has not yet been initialized.
}
// Enter suspended mode.
if err := screen.Suspend(); err != nil {
return false // Suspension failed.
}
// Wait for "f" to return.
f()
// If the screen object has changed in the meantime, we need to do more.
a.RLock()
defer a.RUnlock()
if a.screen != screen {
// Calling Stop() while in suspend mode currently still leads to a
// panic, see https://github.com/gdamore/tcell/issues/440.
screen.Fini()
if a.screen == nil {
return true // If stop was called (a.screen is nil), we're done already.
}
} else {
// It hasn't changed. Resume.
screen.Resume() // Not much we can do in case of an error.
}
// Continue application loop.
return true
}
// Draw refreshes the screen (during the next update cycle). It calls the Draw()
// function of the application's root primitive and then syncs the screen
// buffer. It is almost never necessary to call this function. It can actually
// deadlock your application if you call it from the main thread (e.g. in a
// callback function of a widget). Please see
// https://github.com/rivo/tview/wiki/Concurrency for details.
func (a *Application) Draw() *Application {
a.QueueUpdate(func() {
a.draw()
})
return a
}
// ForceDraw refreshes the screen immediately. Use this function with caution as
// it may lead to race conditions with updates to primitives in other
// goroutines. It is always preferrable to use Draw() instead. Never call this
// function from a goroutine.
//
// It is safe to call this function during queued updates and direct event
// handling.
func (a *Application) ForceDraw() *Application {
return a.draw()
}
// draw actually does what Draw() promises to do.
func (a *Application) draw() *Application {
a.Lock()
defer a.Unlock()
screen := a.screen
root := a.root
fullscreen := a.rootFullscreen
before := a.beforeDraw
after := a.afterDraw
// Maybe we're not ready yet or not anymore.
if screen == nil || root == nil {
return a
}
// Resize if requested.
if fullscreen && root != nil {
width, height := screen.Size()
root.SetRect(0, 0, width, height)
}
// Call before handler if there is one.
if before != nil {
if before(screen) {
screen.Show()
return a
}
}
// Draw all primitives.
root.Draw(screen)
// Call after handler if there is one.
if after != nil {
after(screen)
}
// Sync screen.
screen.Show()
return a
}
// Sync forces a full re-sync of the screen buffer with the actual screen during
// the next event cycle. This is useful for when the terminal screen is
// corrupted so you may want to offer your users a keyboard shortcut to refresh
// the screen.
func (a *Application) Sync() *Application {
a.updates <- queuedUpdate{f: func() {
a.RLock()
screen := a.screen
a.RUnlock()
if screen == nil {
return
}
screen.Sync()
}}
return a
}
// SetBeforeDrawFunc installs a callback function which is invoked just before
// the root primitive is drawn during screen updates. If the function returns
// true, drawing will not continue, i.e. the root primitive will not be drawn
// (and an after-draw-handler will not be called).
//
// Note that the screen is not cleared by the application. To clear the screen,
// you may call screen.Clear().
//
// Provide nil to uninstall the callback function.
func (a *Application) SetBeforeDrawFunc(handler func(screen tcell.Screen) bool) *Application {
a.beforeDraw = handler
return a
}
// GetBeforeDrawFunc returns the callback function installed with
// SetBeforeDrawFunc() or nil if none has been installed.
func (a *Application) GetBeforeDrawFunc() func(screen tcell.Screen) bool {
return a.beforeDraw
}
// SetAfterDrawFunc installs a callback function which is invoked after the root
// primitive was drawn during screen updates.
//
// Provide nil to uninstall the callback function.
func (a *Application) SetAfterDrawFunc(handler func(screen tcell.Screen)) *Application {
a.afterDraw = handler
return a
}
// GetAfterDrawFunc returns the callback function installed with
// SetAfterDrawFunc() or nil if none has been installed.
func (a *Application) GetAfterDrawFunc() func(screen tcell.Screen) {
return a.afterDraw
}
// SetRoot sets the root primitive for this application. If "fullscreen" is set
// to true, the root primitive's position will be changed to fill the screen.
//
// This function must be called at least once or nothing will be displayed when
// the application starts.
//
// It also calls SetFocus() on the primitive.
func (a *Application) SetRoot(root Primitive, fullscreen bool) *Application {
a.Lock()
a.root = root
a.rootFullscreen = fullscreen
if a.screen != nil {
a.screen.Clear()
}
a.Unlock()
a.SetFocus(root)
return a
}
// ResizeToFullScreen resizes the given primitive such that it fills the entire
// screen.
func (a *Application) ResizeToFullScreen(p Primitive) *Application {
a.RLock()
width, height := a.screen.Size()
a.RUnlock()
p.SetRect(0, 0, width, height)
return a
}
// SetFocus sets the focus to a new primitive. All key events will be directed
// down the hierarchy (starting at the root) until a primitive handles them,
// which per default goes towards the focused primitive.
//
// Blur() will be called on the previously focused primitive. Focus() will be
// called on the new primitive.
func (a *Application) SetFocus(p Primitive) *Application {
a.Lock()
if a.focus != nil {
a.focus.Blur()
}
a.focus = p
if a.screen != nil {
a.screen.HideCursor()
}
a.Unlock()
if p != nil {
p.Focus(func(p Primitive) {
a.SetFocus(p)
})
}
return a
}
// GetFocus returns the primitive which has the current focus. If none has it,
// nil is returned.
func (a *Application) GetFocus() Primitive {
a.RLock()
defer a.RUnlock()
return a.focus
}
// QueueUpdate is used to synchronize access to primitives from non-main
// goroutines. The provided function will be executed as part of the event loop
// and thus will not cause race conditions with other such update functions or
// the Draw() function.
//
// Note that Draw() is not implicitly called after the execution of f as that
// may not be desirable. You can call Draw() from f if the screen should be
// refreshed after each update. Alternatively, use QueueUpdateDraw() to follow
// up with an immediate refresh of the screen.
//
// This function returns after f has executed.
func (a *Application) QueueUpdate(f func()) *Application {
ch := make(chan struct{})
a.updates <- queuedUpdate{f: f, done: ch}
<-ch
return a
}
// QueueUpdateDraw works like QueueUpdate() except it refreshes the screen
// immediately after executing f.
func (a *Application) QueueUpdateDraw(f func()) *Application {
a.QueueUpdate(func() {
f()
a.draw()
})
return a
}
// QueueEvent sends an event to the Application event loop.
//
// It is not recommended for event to be nil.
func (a *Application) QueueEvent(event tcell.Event) *Application {
a.events <- event
return a
}