-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathrecord.py
161 lines (123 loc) · 5.41 KB
/
record.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
try:
from ..gui.signal import *
from ..utils.db import *
from ..utils.telemetry import my_tracer, os_name
from ..gpt_computer_agent import the_input_box
except ImportError:
from gui.signal import *
from utils.db import *
from utils.telemetry import my_tracer, os_name
from gpt_computer_agent import the_input_box
import numpy as np
import sounddevice as sd
import soundfile as sf
import scipy.io.wavfile as wavfile
import soundcard as sc
import threading
import time
from scipy.io.wavfile import write
samplerate = 48000 # Updated samplerate for better quality
channels = 1
recording = False
audio_data = None
user_id = load_user_id()
os_name_ = os_name()
import queue
# Initialize a queue to keep the last N audio levels (rolling window)
audio_levels = queue.Queue(maxsize=10) # Adjust size as needed
def calculate_dynamic_threshold():
"""Calculate a dynamic threshold based on recent audio levels."""
if audio_levels.qsize() == 0:
return 0.01 # Default threshold if no data is available
else:
# Calculate the average of the last N audio levels
return np.mean(list(audio_levels.queue)) * 2 # Adjust multiplier as needed
silence_start_time = None
auto_stop_recording = True
def start_recording(take_system_audio, buttonhandler):
"""Start recording audio from microphone and/or system sound."""
with my_tracer.start_span("start_recording") as span:
span.set_attribute("user_id", user_id)
span.set_attribute("os_name", os_name_)
global the_input_box_pre
from ..gpt_computer_agent import the_input_box, the_main_window
the_input_box_pre = the_input_box.toPlainText()
the_main_window.update_from_thread("Click again when recording is done")
global recording, audio_data, silence_start_time, auto_stop_recording
recording = True
audio_data = np.array([], dtype="float32")
print("Recording started...")
threshold = 0.01 # Define the threshold for stopping the recording
silence_duration = (
2 # Duration in seconds to consider as silence before stopping
)
silence_start_time = None
recording_start_time = time.time() # Record the start time of the recording
auto_stop_recording = is_auto_stop_recording_setting_active()
def callback(indata, frames, time_info, status):
global audio_data, recording, silence_start_time, auto_stop_recording
current_level = np.max(np.abs(indata))
# Add the current level to the queue
if audio_levels.full():
audio_levels.get() # Remove the oldest level if the queue is full
audio_levels.put(current_level)
# Calculate dynamic threshold based on recent audio levels
dynamic_threshold = calculate_dynamic_threshold()
if recording:
audio_data = np.append(audio_data, indata)
# Check if the audio is below the dynamic threshold
if current_level < dynamic_threshold and auto_stop_recording:
if silence_start_time is None:
silence_start_time = time.time() # Mark the start of silence
# Ensure recording has been ongoing for at least 3 seconds before considering auto-stop
elif (time.time() - silence_start_time) > silence_duration and (
time.time() - recording_start_time
) > 3:
recording = False
buttonhandler.recording = False
else:
silence_start_time = None
def record_audio():
with my_tracer.start_span("record_audio") as span:
span.set_attribute("user_id", user_id)
span.set_attribute("os_name", os_name_)
global recording
mics = sc.all_microphones(include_loopback=True)
default_mic = mics[0]
data = []
with default_mic.recorder(samplerate=148000) as mic:
print("Recording...")
while recording:
frame = mic.record(numframes=4096)
data.append(frame)
data = np.concatenate(data, axis=0)
data_int16 = (data * 32767).astype("int16")
wavfile.write(system_sound_location, 148000, data_int16)
if take_system_audio:
recording_thread = threading.Thread(target=record_audio)
recording_thread.start()
with sd.InputStream(callback=callback, channels=channels, samplerate=samplerate):
while recording:
sd.sleep(100)
if not recording:
sf.write(mic_record_location, audio_data, samplerate)
print("Audio saved as voice_input.wav")
signal_handler.recording_stopped.emit()
def stop_recording():
"""Stop recording audio."""
global recording
recording = False
print("Recording stopped")
def quick_speech_to_text(time_total: int = 5) -> str:
global samplerate, channels, samplerate
quic_location = "temp.wav"
myrecording = sd.rec(
int(time_total * samplerate), samplerate=samplerate, channels=channels
)
sd.wait() # Wait until recording is finished
write(quic_location, samplerate, myrecording) # Save as WAV file
try:
from .stt import speech_to_text
except ImportError:
from stt import speech_to_text
return speech_to_text(quic_location)