forked from khanrc/tf.gans-comparison
-
Notifications
You must be signed in to change notification settings - Fork 0
/
download.py
183 lines (158 loc) · 5.52 KB
/
download.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
"""
Burrowed from https://github.com/carpedm20/DCGAN-tensorflow/blob/master/download.py
"""
"""
Modification of https://github.com/stanfordnlp/treelstm/blob/master/scripts/download.py
Downloads the following:
- Celeb-A dataset
- LSUN dataset
- MNIST dataset
"""
from __future__ import print_function
import os
import sys
import gzip
import json
import shutil
import zipfile
import argparse
import requests
import subprocess
from tqdm import tqdm
from six.moves import urllib
parser = argparse.ArgumentParser(description='Download dataset for DCGAN.')
parser.add_argument('datasets', metavar='N', type=str, nargs='+', choices=['celebA', 'lsun', 'mnist'],
help='name of dataset to download [celebA, lsun, mnist]')
def download(url, dirpath):
filename = url.split('/')[-1]
filepath = os.path.join(dirpath, filename)
u = urllib.request.urlopen(url)
f = open(filepath, 'wb')
filesize = int(u.headers["Content-Length"])
print("Downloading: %s Bytes: %s" % (filename, filesize))
downloaded = 0
block_sz = 8192
status_width = 70
while True:
buf = u.read(block_sz)
if not buf:
print('')
break
else:
print('', end='\r')
downloaded += len(buf)
f.write(buf)
status = (("[%-" + str(status_width + 1) + "s] %3.2f%%") %
('=' * int(float(downloaded) / filesize * status_width) + '>', downloaded * 100. / filesize))
print(status, end='')
sys.stdout.flush()
f.close()
return filepath
def download_file_from_google_drive(id, destination):
URL = "https://docs.google.com/uc?export=download"
session = requests.Session()
response = session.get(URL, params={ 'id': id }, stream=True)
token = get_confirm_token(response)
if token:
params = { 'id' : id, 'confirm' : token }
response = session.get(URL, params=params, stream=True)
save_response_content(response, destination)
def get_confirm_token(response):
for key, value in response.cookies.items():
if key.startswith('download_warning'):
return value
return None
def save_response_content(response, destination, chunk_size=32*1024):
total_size = int(response.headers.get('content-length', 0))
with open(destination, "wb") as f:
for chunk in tqdm(response.iter_content(chunk_size), total=total_size,
unit='B', unit_scale=True, desc=destination):
if chunk: # filter out keep-alive new chunks
f.write(chunk)
def unzip(filepath):
print("Extracting: " + filepath)
dirpath = os.path.dirname(filepath)
with zipfile.ZipFile(filepath) as zf:
zf.extractall(dirpath)
os.remove(filepath)
def download_celeb_a(dirpath):
data_dir = 'celebA'
if os.path.exists(os.path.join(dirpath, data_dir)):
print('Found Celeb-A - skip')
return
filename, drive_id = "img_align_celeba.zip", "0B7EVK8r0v71pZjFTYXZWM3FlRnM"
save_path = os.path.join(dirpath, filename)
if os.path.exists(save_path):
print('[*] {} already exists'.format(save_path))
else:
download_file_from_google_drive(drive_id, save_path)
zip_dir = ''
with zipfile.ZipFile(save_path) as zf:
zip_dir = zf.namelist()[0]
zf.extractall(dirpath)
os.remove(save_path)
os.rename(os.path.join(dirpath, zip_dir), os.path.join(dirpath, data_dir))
def _list_categories(tag):
url = 'http://lsun.cs.princeton.edu/htbin/list.cgi?tag=' + tag
f = urllib.request.urlopen(url)
return json.loads(f.read())
def _download_lsun(out_dir, category, set_name, tag):
url = 'http://lsun.cs.princeton.edu/htbin/download.cgi?tag={tag}' \
'&category={category}&set={set_name}'.format(**locals())
print(url)
if set_name == 'test':
out_name = 'test_lmdb.zip'
else:
out_name = '{category}_{set_name}_lmdb.zip'.format(**locals())
out_path = os.path.join(out_dir, out_name)
cmd = ['curl', url, '-o', out_path]
print('Downloading', category, set_name, 'set')
subprocess.call(cmd)
def download_lsun(dirpath):
data_dir = os.path.join(dirpath, 'lsun')
if os.path.exists(data_dir):
print('Found LSUN - skip')
return
else:
os.mkdir(data_dir)
tag = 'latest'
#categories = _list_categories(tag)
categories = ['bedroom']
for category in categories:
_download_lsun(data_dir, category, 'train', tag)
_download_lsun(data_dir, category, 'val', tag)
_download_lsun(data_dir, '', 'test', tag)
def download_mnist(dirpath):
data_dir = os.path.join(dirpath, 'mnist')
if os.path.exists(data_dir):
print('Found MNIST - skip')
return
else:
os.mkdir(data_dir)
url_base = 'http://yann.lecun.com/exdb/mnist/'
file_names = ['train-images-idx3-ubyte.gz',
'train-labels-idx1-ubyte.gz',
't10k-images-idx3-ubyte.gz',
't10k-labels-idx1-ubyte.gz']
for file_name in file_names:
url = (url_base+file_name).format(**locals())
print(url)
out_path = os.path.join(data_dir,file_name)
cmd = ['curl', url, '-o', out_path]
print('Downloading ', file_name)
subprocess.call(cmd)
cmd = ['gzip', '-d', out_path]
print('Decompressing ', file_name)
subprocess.call(cmd)
def prepare_data_dir(path = './data'):
if not os.path.exists(path):
os.mkdir(path)
if __name__ == '__main__':
args = parser.parse_args()
prepare_data_dir()
if any(name in args.datasets for name in ['CelebA', 'celebA', 'celebA']):
download_celeb_a('./data')
if 'lsun' in args.datasets:
download_lsun('./data')
if 'mnist' in args.datasets:
download_mnist('./data')