forked from sjwhitworth/golearn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbernoulli_nb_test.go
99 lines (81 loc) · 3.62 KB
/
bernoulli_nb_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
package naive
import (
"math"
"github.com/sjwhitworth/golearn/base"
"testing"
. "github.com/smartystreets/goconvey/convey"
)
func TestNoFit(t *testing.T) {
Convey("Given an empty BernoulliNaiveBayes", t, func() {
nb := NewBernoulliNBClassifier()
Convey("PredictOne should panic if Fit was not called", func() {
testDoc := []float64{0.0, 1.0}
So(func() { nb.PredictOne(testDoc) }, ShouldPanic)
})
})
}
func TestSimple(t *testing.T) {
Convey("Given a simple training data", t, func() {
trainingData, err1 := base.ParseCSVToInstances("test/simple_train.csv", false)
if err1 != nil {
t.Error(err1)
}
nb := NewBernoulliNBClassifier()
nb.Fit(trainingData)
Convey("Check if Fit is working as expected", func() {
Convey("All log(prior) should be correctly calculated", func() {
logPriorBlue := nb.logClassPrior["blue"]
logPriorRed := nb.logClassPrior["red"]
So(logPriorBlue, ShouldAlmostEqual, math.Log(0.5))
So(logPriorRed, ShouldAlmostEqual, math.Log(0.5))
})
Convey("'red' conditional probabilities should be correct", func() {
logCondProbTok0 := nb.condProb["red"][0]
logCondProbTok1 := nb.condProb["red"][1]
logCondProbTok2 := nb.condProb["red"][2]
So(logCondProbTok0, ShouldAlmostEqual, 1.0)
So(logCondProbTok1, ShouldAlmostEqual, 1.0/3.0)
So(logCondProbTok2, ShouldAlmostEqual, 1.0)
})
Convey("'blue' conditional probabilities should be correct", func() {
logCondProbTok0 := nb.condProb["blue"][0]
logCondProbTok1 := nb.condProb["blue"][1]
logCondProbTok2 := nb.condProb["blue"][2]
So(logCondProbTok0, ShouldAlmostEqual, 1.0)
So(logCondProbTok1, ShouldAlmostEqual, 1.0)
So(logCondProbTok2, ShouldAlmostEqual, 1.0/3.0)
})
})
Convey("PredictOne should work as expected", func() {
Convey("Using a document with different number of cols should panic", func() {
testDoc := []float64{0.0, 2.0}
So(func() { nb.PredictOne(testDoc) }, ShouldPanic)
})
Convey("Token 1 should be a good predictor of the blue class", func() {
testDoc := []float64{0.0, 123.0, 0.0}
So(nb.PredictOne(testDoc), ShouldEqual, "blue")
testDoc = []float64{120.0, 123.0, 0.0}
So(nb.PredictOne(testDoc), ShouldEqual, "blue")
})
Convey("Token 2 should be a good predictor of the red class", func() {
testDoc := []float64{0.0, 0.0, 120.0}
So(nb.PredictOne(testDoc), ShouldEqual, "red")
testDoc = []float64{10.0, 0.0, 120.0}
So(nb.PredictOne(testDoc), ShouldEqual, "red")
})
})
Convey("Predict should work as expected", func() {
testData, err := base.ParseCSVToInstances("test/simple_test.csv", false)
if err != nil {
t.Error(err)
}
predictions := nb.Predict(testData)
Convey("All simple predicitions should be correct", func() {
So(predictions.GetClass(0), ShouldEqual, "blue")
So(predictions.GetClass(1), ShouldEqual, "red")
So(predictions.GetClass(2), ShouldEqual, "blue")
So(predictions.GetClass(3), ShouldEqual, "red")
})
})
})
}