forked from HexRaysSA/goomba
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfile.cpp
212 lines (184 loc) · 6.46 KB
/
file.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
/*
* Copyright (c) 2023 by Hex-Rays, [email protected]
* ALL RIGHTS RESERVED.
*
* gooMBA plugin for Hex-Rays Decompiler.
*
*/
#include "z3++_no_warn.h"
#include <hexrays.hpp>
#include <fpro.h>
#include "file.hpp"
#include "msynth_parser.hpp"
#include "simp_lin_conj_exprs.hpp"
#include "heuristics.hpp"
#include "equiv_class.hpp"
//-------------------------------------------------------------------------
// In fact this function is not really needed. The user can simply turn on
// the timestamp display in the output window.
static qstring curtime()
{
char buf[64];
char *ptr = buf;
char *end = buf + sizeof(buf);
qtime64_t ts = qtime64();
ptr += qstrftime64(ptr, end-ptr, "%H:%M:%S", ts);
uint32 msecs = get_usecs(ts) / 1000;
qsnprintf(ptr, end-ptr, ".%03d", msecs);
return qstring(buf);
}
//-------------------------------------------------------------------------
void create_minsns_file(FILE *msynth_in, FILE *minsns_out)
{
qstring line;
int n_proc = 0;
int n_written = 0;
while ( qgetline(&line, msynth_in) >= 0 )
{
n_proc++;
if ( line.size() == 0 )
continue;
if ( n_proc % REPORT_FREQ == 0 )
msg("%s: Processed %d, Wrote %d\n", curtime().c_str(), n_proc, n_written);
mopvec_t default_vars;
//-------------------------------------------------------------------------
// an *abstract* mop is a mop_l that does not refer to anything within a
// specific program, it is a placeholder for minsn templates
for ( int i = 0; i < CANDIDATE_EXPR_NUMINPUTS; i++ )
{
mop_t new_var;
new_var.t = mop_l;
new_var.l = new lvar_ref_t(nullptr, i);
new_var.size = 8;
default_vars.push_back(new_var);
}
msynth_expr_parser_t mep(line.c_str(), default_vars);
minsn_t *insn = mep.parse_next_expr();
bytevec_t bv;
insn->serialize(&bv);
uint32 bv_sz = bv.size();
qfwrite(minsns_out, &bv_sz, sizeof(bv_sz));
qfwrite(minsns_out, bv.begin(), bv_sz);
n_written++;
delete insn;
}
msg("%s: Processed %d, Wrote %d\n", curtime().c_str(), n_proc, n_written);
}
//-------------------------------------------------------------------------
// bytevec comparison based on length
struct bv_len_cmptr_t
{
inline bool operator()(const bytevec_t &a, const bytevec_t &b) const
{
auto asz = a.size();
auto bsz = b.size();
return std::tie(asz, a) < std::tie(bsz, b);
}
};
typedef std::set<bytevec_t, bv_len_cmptr_t> bvset_t;
//-------------------------------------------------------------------------
inline size_t bv_sz_on_disk(const bytevec_t &bv)
{
return sizeof(uint32) + bv.size();
}
//-------------------------------------------------------------------------
static void write_bv_to_disk(FILE *fout, const bytevec_t &bv)
{
uint32 bv_sz = bv.size();
qfwrite(fout, &bv_sz, sizeof(bv_sz));
qfwrite(fout, bv.begin(), bv_sz);
}
//-------------------------------------------------------------------------
static size_t bvset_sz_on_disk(const bvset_t &bvset)
{
size_t res = sizeof(uint32);
for ( const auto &bv : bvset )
res += bv_sz_on_disk(bv);
return res;
}
//-------------------------------------------------------------------------
static void write_bvset_to_disk(FILE *fout, const bvset_t &bvset)
{
uint32 bvset_sz = bvset.size();
qfwrite(fout, &bvset_sz, sizeof(bvset_sz));
for ( const auto &bv : bvset )
write_bv_to_disk(fout, bv);
}
//-------------------------------------------------------------------------
bool create_oracle_file(FILE *minsns_in, FILE *oracle_out)
{
// begin by loading the minsns from the file and generating fingerprints
// keeping full minsns in memory would take too much space, so we store them as strings
// and use string length as a proxy for complexity
std::map<func_fingerprint_t, bvset_t> oracle;
equiv_class_finder_t ecf;
int n_proc = 0;
while ( true )
{
if ( n_proc % REPORT_FREQ == 0 )
msg("%s: Processed %d, #Fingerprints %" FMT_Z "\n", curtime().c_str(), n_proc, oracle.size());
n_proc++;
uint32 minsn_sz;
if ( qfread(minsns_in, &minsn_sz, sizeof(minsn_sz)) != sizeof(minsn_sz) )
break;
if ( minsn_sz > qfsize(minsns_in) ) // sanity check on minsn_sz
{
msg("Wrong instruction size %d in the oracle file, stopped reading it\n", minsn_sz);
return false;
}
bytevec_t buf;
buf.resize(minsn_sz);
if ( qfread(minsns_in, buf.begin(), minsn_sz) != minsn_sz )
break;
func_fingerprint_t fp = ecf.compute_fingerprint_from_serialization(buf.begin(), minsn_sz);
if ( oracle.count(fp) == 0 )
oracle.insert( { fp, std::set<bytevec_t, bv_len_cmptr_t>() } );
oracle[fp].insert(buf);
}
msg("%s: Processed %d, #Fingerprints %" FMT_Z "\n", curtime().c_str(), n_proc, oracle.size());
// write the resulting oracle to the file
// begin by writing the format version
{
bytevec_t bv;
uint32 format_version = minsn_t(0).serialize(&bv);
qfwrite(oracle_out, &format_version, sizeof(format_version));
}
// write the ecf's test cases to file
uint32 n_tcs = ecf.testcases.size();
qfwrite(oracle_out, &n_tcs, sizeof(n_tcs));
for ( const testcase_t &tc : ecf.testcases )
for ( const uint64 input : tc )
qfwrite(oracle_out, &input, sizeof(input));
msg("Wrote test cases to file\n");
// write the index to file
// the index is a list of entries, each consisting of a uint64 (fingerprint) and a uint64 (offset)
uint32 index_sz = oracle.size();
qfwrite(oracle_out, &index_sz, sizeof(index_sz));
qoff64_t current_offset = 0;
int n_written = 0;
for ( const auto &entry : oracle )
{
if ( n_written % REPORT_FREQ == 0 )
msg("%s: Wrote %d index entries\n", curtime().c_str(), n_written);
n_written++;
auto fingerprint = entry.first;
auto bvset = entry.second;
qfwrite(oracle_out, &fingerprint, sizeof(fingerprint));
qfwrite(oracle_out, ¤t_offset, sizeof(current_offset));
current_offset += bvset_sz_on_disk(bvset);
}
msg("Size of oracle on disk: %llu\n", current_offset);
msg("Current file position: %llu\n", qftell(oracle_out));
// write the actual microinstructions to disk
n_written = 0;
for ( const auto &entry : oracle )
{
if ( n_written % REPORT_FREQ == 0 )
msg("%s: Wrote %d microinstruction vectors\n", curtime().c_str(), n_written);
n_written++;
write_bvset_to_disk(oracle_out, entry.second);
}
msg("%s: Wrote %d microinstruction vectors\n", curtime().c_str(), n_written);
msg("Current file position: %" FMT_64 "u\n", qftell(oracle_out));
return true;
}