forked from shubhomoydas/ad_examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpercept.py
executable file
·210 lines (171 loc) · 7.06 KB
/
percept.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
from common.utils import *
import numpy as np
import numpy.random as rnd
from aad.simple_aad import *
from common.gen_samples import *
"""
pythonw -m percept.percept
"""
class Oracle(object):
def __init__(self, y):
self.y = np.array([1 if v == 1 else -1 for v in y], dtype=int)
def get_label(self, i):
return self.y[i]
def plot_learning(x, y, q, queried, aad, u_theta, dp, title=None,
plot_true_w=True, plot_xtau=True, plot_hyperplane=True, plot_w=True,
plot_theta=False, plot_legends=False):
lbl_color_map = {0: "blue", 1: "red", 2: "green"}
line_colors = ["blue", "red", "red"]
line_types = ["--", "--", "-"]
line_widths = [1, 1, 1]
xmx = 4.1 if plot_legends else 1.1
xlim = [-1.1, xmx]
ylim = [-1.1, 1.1]
marker = '+'
s = 15
samplescol = "grey"
linewidth = 2
pl = dp.get_next_plot()
pl.set_aspect('equal')
# plt.xlabel('x')
# plt.ylabel('y')
plt.xticks([])
plt.yticks([])
if title is not None:
plt.title(title, fontsize=8)
if xlim is not None:
plt.xlim(xlim)
if ylim is not None:
plt.ylim(ylim)
# print([int(v) for v in queried.keys()])
qidxs = np.array([int(v) for v in queried.keys()], dtype=int)
nomls = np.where(y==0)[0]
anoms = np.where(y==1)[0]
pl.scatter(x[nomls, 0], x[nomls, 1], marker=marker, s=s, facecolors='blue', edgecolors="blue", label="Nominal")
pl.scatter(x[anoms, 0], x[anoms, 1], marker=marker, s=s, facecolors='red', edgecolors="red", label="Anomaly")
# dp.plot_points(x, pl, labels=y, lbl_color_map=lbl_color_map,
# marker=marker, s=s, facecolors='none', defaultcol=samplescol)
if len(qidxs) > 0:
pl.scatter(x[qidxs, 0], x[qidxs, 1], marker='o', s=45,
edgecolors='brown', facecolors='none')
if q is not None:
x_q = x[q]
pl.scatter(x_q[0], x_q[1], marker='o', s=45, edgecolors='black', facecolors='none')
x_tau = None
if plot_xtau and aad.tau_relative:
_, x_tau = aad.get_x_tau(x)
pl.scatter(x_tau[0], x_tau[1], marker='+', s=45, edgecolors='orange', facecolors='orange')
w = aad.w
logger.debug("w: %s" % str(w))
r = np.array([np.min(x[:, 0]), np.max(x[:, 0])])
# logger.debug("r: %s" % str(r))
lines = list()
line_labels = list()
if plot_true_w:
# plot the true weight vector
u = interpolate_2D_line_by_point_and_vec(np.array([0., 1.]), [0., 0.],
[np.cos(u_theta), np.sin(u_theta)])
lines.append(u)
line_labels.append(r"True weights ${\bf w}^*$")
# w0*x + w1*y = (1-aad.tau)
if aad.fixed_tau:
q_tau = 1 - aad.tau
elif aad.tau_relative:
q_tau = w.dot(x_tau)
else:
raise ValueError("q_tau could not be determined")
if plot_w:
# draw the computed weighted vector passing through the center
# Tis is perpendicular to the hyper-plane
zd = interpolate_2D_line_by_point_and_vec(np.array([0., w[0]]), [0., 0.], w)
lines.append(zd)
line_labels.append(r"Uniform weights ${\bf w}_{unif}$")
if plot_hyperplane:
# draw the hyper-plane passing through tau-th score
zw = interpolate_2D_line_by_slope_and_intercept(r, -w[0] / w[1], q_tau / w[1])
lines.append(zw)
line_labels.append(r"hyperplane $\perp$ ${\bf w}_{unif}$")
if plot_theta:
pl.text(0.22, 0.33, r"${\theta}$", fontsize=20)
for i, line in enumerate(lines):
color = "blue" if line_colors is None else line_colors[i]
pl.plot(line[:, 0], line[:, 1], line_types[i], color=color, linewidth=line_widths[i],
label=line_labels[i] if plot_legends else None)
if plot_legends:
pl.legend(loc='lower right', prop={'size': 14})
def get_param_sig(tau_relative, fixed_tau, use_prior, update_only_on_error):
return "%s_%s_%s%s" % \
("taurel" if tau_relative else "norel",
"fixedtau" if fixed_tau else "vartau",
"prior" if use_prior else "noprior",
"_upderr" if update_only_on_error else "")
if __name__ == "__main__":
logger = logging.getLogger(__name__)
args = get_command_args(debug=True, debug_args=["--debug",
"--plot",
"--log_file=temp/percept.log"])
# print "log file: %s" % args.log_file
configure_logger(args)
rnd.seed(42)
u_theta = np.pi/4 + np.pi*20./180
x, y = get_sphere_samples([(100, 0, 0, 2*np.pi),
( 15, 1, u_theta - np.pi*10./180, u_theta + np.pi*10./180)])
n = x.shape[0]
d = x.shape[1]
# tau is computed assuming that the anomalies occupy tau-proportion
# of the circumference
tau = 1 - np.cos(0.15 * np.pi)
tau_relative = True
fixed_tau = True
use_prior = True
update_only_on_error = False
# randomize sequence for better performance of perceptron
ids = np.arange(n)
rnd.shuffle(ids)
x = x[ids]
y = y[ids]
oracle = Oracle(y)
queried = dict()
if use_prior:
prior = normalize(np.ones(d, dtype=float))
else:
prior = None
aad = SimpleActive(Ca=1., Cn=1., Cx=1.,
tau=tau, tau_relative=tau_relative, fixed_tau=fixed_tau,
prior_sigma2=d * 10.)
aad.fit(x, w0=prior, prior=prior)
dir_create("./temp/percept")
sig = get_param_sig(tau_relative, fixed_tau, use_prior, update_only_on_error)
pdfpath = "./temp/percept/percept_%s.pdf" % sig
dp = DataPlotter(pdfpath=pdfpath, rows=1, cols=1)
plot_initial_only = False
# logger.debug("Oracle: %s" % str(oracle.y))
u = np.array([np.cos(u_theta), np.sin(u_theta)])
if plot_initial_only:
budget = 0
title = None
else:
budget = 30
title = r"initial (${\theta}$: %1.2f)" % (np.arccos(u.dot(aad.w)) * 180. / np.pi)
plot_learning(x, y, None, queried, aad, u_theta, dp,
title=title,
plot_xtau=False, plot_theta=plot_initial_only, plot_legends=plot_initial_only
)
for iter in range(budget):
# active learning step
q = aad.get_query(x, queried)
queried[q] = oracle.get_label(q)
# logger.debug(queried)
# logger.debug("q: %d, label: %d" % (q, queried[q]))
if (not update_only_on_error) or queried[q] != 1:
if update_only_on_error:
logger.debug("updating on error...")
aad.update(x, queried)
if iter % 1 == 0:
idxs, y_ = aad.as_arrays(queried)
anoms, noms = aad.separate_label_indexes(y_)
plot_learning(x, y, q, queried, aad, u_theta, dp, title=r"iter %d (${\theta}$: %1.2f) [%d/%d]" %
(iter + 1, np.arccos(u.dot(aad.w)) * 180. / np.pi,
len(anoms), len(noms)))
logger.debug("iter %d: anoms: %d, noms: %d" % (iter+1, len(anoms), len(noms)))
dp.close()