forked from libgeos/geos
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDistance.cpp
206 lines (167 loc) · 5.79 KB
/
Distance.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
/**********************************************************************
*
* GEOS - Geometry Engine Open Source
* http://geos.osgeo.org
*
* Copyright (C) 2018 Paul Ramsey <[email protected]>
*
* This is free software; you can redistribute and/or modify it under
* the terms of the GNU Lesser General Public Licence as published
* by the Free Software Foundation.
* See the COPYING file for more information.
*
**********************************************************************
*
* Last port: algorithm/Distance.java @ 2017-09-04
*
**********************************************************************/
#include <cmath>
#include <vector>
#include <algorithm>
#include <geos/algorithm/Distance.h>
#include <geos/geom/Envelope.h>
#include <geos/util/IllegalArgumentException.h>
namespace geos {
namespace algorithm { // geos.algorithm
/*public static*/
double
Distance::pointToSegment(const geom::Coordinate& p,
const geom::Coordinate& A,
const geom::Coordinate& B)
{
/* if start==end, then use pt distance */
if(A == B) {
return p.distance(A);
}
/*
otherwise use comp.graphics.algorithms method:
(1)
AC dot AB
r = ---------
||AB||^2
r has the following meaning:
r=0 P = A
r=1 P = B
r<0 P is on the backward extension of AB
r>1 P is on the forward extension of AB
0<r<1 P is interior to AB
*/
double r = ((p.x - A.x) * (B.x - A.x) + (p.y - A.y) * (B.y - A.y)) /
((B.x - A.x) * (B.x - A.x) + (B.y - A.y) * (B.y - A.y));
if(r <= 0.0) {
return p.distance(A);
}
if(r >= 1.0) {
return p.distance(B);
}
/*
(2)
(Ay-Cy)(Bx-Ax)-(Ax-Cx)(By-Ay)
s = -----------------------------
L^2
Then the distance from C to P = |s|*L.
*/
double s = ((A.y - p.y) * (B.x - A.x) - (A.x - p.x) * (B.y - A.y)) /
((B.x - A.x) * (B.x - A.x) + (B.y - A.y) * (B.y - A.y));
return fabs(s) * sqrt(((B.x - A.x) * (B.x - A.x) + (B.y - A.y) * (B.y - A.y)));
}
/*public static*/
double
Distance::pointToLinePerpendicular(const geom::Coordinate& p,
const geom::Coordinate& A, const geom::Coordinate& B)
{
/*
use comp.graphics.algorithms method
(2)
(Ay-Cy)(Bx-Ax)-(Ax-Cx)(By-Ay)
s = -----------------------------
L^2
Then the distance from C to P = |s|*L.
*/
double s = ((A.y - p.y) * (B.x - A.x) - (A.x - p.x) * (B.y - A.y))
/
((B.x - A.x) * (B.x - A.x) + (B.y - A.y) * (B.y - A.y));
return fabs(s) * sqrt(((B.x - A.x) * (B.x - A.x) + (B.y - A.y) * (B.y - A.y)));
}
/*public static*/
double
Distance::segmentToSegment(const geom::Coordinate& A,
const geom::Coordinate& B, const geom::Coordinate& C,
const geom::Coordinate& D)
{
/* Check for zero-length segments */
if(A == B) {
return pointToSegment(A, C, D);
}
if(C == D) {
return pointToSegment(D, A, B);
}
/* AB and CD are line segments */
/*
From comp.graphics.algo
Solving the above for r and s yields
(Ay-Cy)(Dx-Cx)-(Ax-Cx)(Dy-Cy)
r = ----------------------------- (eqn 1)
(Bx-Ax)(Dy-Cy)-(By-Ay)(Dx-Cx)
(Ay-Cy)(Bx-Ax)-(Ax-Cx)(By-Ay)
s = ----------------------------- (eqn 2)
(Bx-Ax)(Dy-Cy)-(By-Ay)(Dx-Cx)
Let P be the position vector of the intersection point, then
P=A+r(B-A) or
Px=Ax+r(Bx-Ax)
Py=Ay+r(By-Ay)
By examining the values of r & s, you can also determine some other
limiting conditions:
If 0<=r<=1 & 0<=s<=1, intersection exists;
If r<0 or r>1 or s<0 or s>1, line segments do not intersect;
If the denominator in eqn 1 is zero, AB & CD are parallel;
If the numerator in eqn 1 is also zero, AB & CD are collinear.
*/
bool noIntersection = false;
if (!geom::Envelope::intersects(A, B, C, D)) {
noIntersection = true;
} else {
double denom = (B.x - A.x) * (D.y - C.y) - (B.y - A.y) * (D.x - C.x);
if (denom == 0) {
noIntersection = true;
} else {
double r_num = (A.y - C.y) * (D.x - C.x) - (A.x - C.x) * (D.y - C.y);
double s_num = (A.y - C.y) * (B.x - A.x) - (A.x - C.x) * (B.y - A.y);
double s = s_num / denom;
double r = r_num / denom;
if ((r < 0) || (r > 1) || (s < 0) || (s > 1)) {
noIntersection = true;
}
}
}
if (noIntersection) {
/* no intersection */
return std::min(pointToSegment(A, C, D),
std::min(pointToSegment(B, C, D),
std::min(pointToSegment(C, A, B), pointToSegment(D, A, B))));
}
return 0.0; /* intersection exists */
}
/*public static*/
double
Distance::pointToSegmentString(const geom::Coordinate& p,
const geom::CoordinateSequence* seq)
{
if(seq->isEmpty()) {
throw util::IllegalArgumentException(
"Line array must contain at least one vertex");
}
/* this handles the case of length = 1 */
double minDistance = p.distance(seq->getAt(0));
for(std::size_t i = 0; i < seq->size() - 1; i++) {
const geom::Coordinate& si = seq->getAt(i);
const geom::Coordinate& si1 = seq->getAt(i + 1);
double dist = pointToSegment(p, si, si1);
if(dist < minDistance) {
minDistance = dist;
}
}
return minDistance;
}
} // namespace geos.algorithm
} //namespace geos