forked from libgeos/geos
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMinimumBoundingCircle.cpp
358 lines (320 loc) · 9.28 KB
/
MinimumBoundingCircle.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
/**********************************************************************
*
* GEOS - Geometry Engine Open Source
* http://geos.osgeo.org
*
* Copyright (C) 2013 Sandro Santilli <[email protected]>
* Copyright (C) 2005-2006 Refractions Research Inc.
* Copyright (C) 2001-2002 Vivid Solutions Inc.
*
* This is free software; you can redistribute and/or modify it under
* the terms of the GNU Lesser General Public Licence as published
* by the Free Software Foundation.
* See the COPYING file for more information.
*
**********************************************************************
*
* Last port: algorithm/MinimumBoundingCircle.java 2019-01-24
*
**********************************************************************/
#include <geos/algorithm/Angle.h>
#include <geos/algorithm/MinimumBoundingCircle.h>
#include <geos/geom/Coordinate.h>
#include <geos/geom/CoordinateSequenceFactory.h>
#include <geos/geom/Envelope.h>
#include <geos/geom/Geometry.h>
#include <geos/geom/GeometryCollection.h>
#include <geos/geom/GeometryFactory.h>
#include <geos/geom/LineString.h>
#include <geos/geom/Polygon.h>
#include <geos/geom/Triangle.h>
#include <geos/util/GEOSException.h>
#include <math.h> // sqrt
#include <memory> // for unique_ptr
#include <typeinfo>
#include <vector>
using namespace geos::geom;
namespace geos {
namespace algorithm { // geos.algorithm
/*public*/
std::unique_ptr<Geometry>
MinimumBoundingCircle::getCircle()
{
//TODO: ensure the output circle contains the extermal points.
//TODO: or maybe even ensure that the returned geometry contains ALL the input points?
compute();
if(centre.isNull()) {
return std::unique_ptr<Geometry>(input->getFactory()->createPolygon());
}
std::unique_ptr<Geometry> centrePoint(input->getFactory()->createPoint(centre));
if(radius == 0.0) {
return centrePoint;
}
return centrePoint->buffer(radius);
}
/*public*/
std::unique_ptr<Geometry>
MinimumBoundingCircle::getMaximumDiameter()
{
compute();
uint8_t dims = input->getCoordinateDimension();
std::size_t len = 2;
switch(extremalPts.size()) {
case 0:
return input->getFactory()->createLineString();
case 1:
return std::unique_ptr<Geometry>(input->getFactory()->createPoint(centre));
case 2: {
auto cs = input->getFactory()->getCoordinateSequenceFactory()->create(len, dims);
cs->setAt(extremalPts.front(), 0);
cs->setAt(extremalPts.back(), 1);
return input->getFactory()->createLineString(std::move(cs));
}
default: {
std::vector<Coordinate> fp = farthestPoints(extremalPts);
auto cs = input->getFactory()->getCoordinateSequenceFactory()->create(len, dims);
cs->setAt(fp.front(), 0);
cs->setAt(fp.back(), 1);
return input->getFactory()->createLineString(std::move(cs));
}
}
}
/* private */
std::vector<Coordinate>
MinimumBoundingCircle::farthestPoints(std::vector<Coordinate>& pts)
{
std::vector<Coordinate> fp;
double dist01 = pts[0].distance(pts[1]);
double dist12 = pts[1].distance(pts[2]);
double dist20 = pts[2].distance(pts[0]);
if (dist01 >= dist12 && dist01 >= dist20) {
fp.push_back(pts[0]);
fp.push_back(pts[1]);
return fp;
}
if (dist12 >= dist01 && dist12 >= dist20) {
fp.push_back(pts[1]);
fp.push_back(pts[2]);
return fp;
}
fp.push_back(pts[2]);
fp.push_back(pts[0]);
return fp;
}
/*public*/
std::unique_ptr<Geometry>
MinimumBoundingCircle::getDiameter()
{
compute();
switch(extremalPts.size()) {
case 0:
return input->getFactory()->createLineString();
case 1:
return std::unique_ptr<Geometry>(input->getFactory()->createPoint(centre));
}
uint8_t dims = input->getCoordinateDimension();
std::size_t len = 2;
auto cs = input->getFactory()->getCoordinateSequenceFactory()->create(len, dims);
// TODO: handle case of 3 extremal points, by computing a line from one of
// them through the centre point with len = 2*radius
cs->setAt(extremalPts[0], 0);
cs->setAt(extremalPts[1], 1);
return input->getFactory()->createLineString(std::move(cs));
}
/*public*/
std::vector<Coordinate>
MinimumBoundingCircle::getExtremalPoints()
{
compute();
return extremalPts;
}
/*public*/
Coordinate
MinimumBoundingCircle::getCentre()
{
compute();
return centre;
}
/*public*/
double
MinimumBoundingCircle::getRadius()
{
compute();
return radius;
}
/*private*/
void
MinimumBoundingCircle::computeCentre()
{
switch(extremalPts.size()) {
case 0: {
centre.setNull();
break;
}
case 1: {
centre = extremalPts[0];
break;
}
case 2: {
double xAvg = (extremalPts[0].x + extremalPts[1].x) / 2.0;
double yAvg = (extremalPts[0].y + extremalPts[1].y) / 2.0;
Coordinate c(xAvg, yAvg);
centre = c;
break;
}
case 3: {
centre = Triangle::circumcentre(extremalPts[0], extremalPts[1], extremalPts[2]);
break;
}
default: {
throw util::GEOSException("Logic failure in MinimumBoundingCircle algorithm!");
}
}
}
/*private*/
void
MinimumBoundingCircle::compute()
{
if(!extremalPts.empty()) {
return;
}
computeCirclePoints();
computeCentre();
if(!centre.isNull()) {
radius = centre.distance(extremalPts[0]);
}
}
/*private*/
void
MinimumBoundingCircle::computeCirclePoints()
{
// handle degenerate or trivial cases
if(input->isEmpty()) {
return;
}
if(input->getNumPoints() == 1) {
extremalPts.push_back(*(input->getCoordinate()));
return;
}
/*
* The problem is simplified by reducing to the convex hull.
* Computing the convex hull also has the useful effect of eliminating duplicate points
*/
std::unique_ptr<Geometry> convexHull(input->convexHull());
std::unique_ptr<CoordinateSequence> cs(convexHull->getCoordinates());
std::vector<Coordinate> pts;
cs->toVector(pts);
// strip duplicate final point, if any
if(pts.front().equals2D(pts.back())) {
pts.pop_back();
}
/*
* Optimization for the trivial case where the CH has fewer than 3 points
*/
if(pts.size() <= 2) {
extremalPts = pts;
return;
}
// find a point P with minimum Y ordinate
Coordinate P = lowestPoint(pts);
// find a point Q such that the angle that PQ makes with the x-axis is minimal
Coordinate Q = pointWitMinAngleWithX(pts, P);
/*
* Iterate over the remaining points to find
* a pair or triplet of points which determine the minimal circle.
* By the design of the algorithm,
* at most <tt>pts.length</tt> iterations are required to terminate
* with a correct result.
*/
std::size_t i = 0, n = pts.size();
while(i++ < n) {
Coordinate R = pointWithMinAngleWithSegment(pts, P, Q);
// if PRQ is obtuse, then MBC is determined by P and Q
if(algorithm::Angle::isObtuse(P, R, Q)) {
extremalPts.push_back(P);
extremalPts.push_back(Q);
return;
}
// if RPQ is obtuse, update baseline and iterate
if(algorithm::Angle::isObtuse(R, P, Q)) {
P = R;
continue;
}
// if RQP is obtuse, update baseline and iterate
if(algorithm::Angle::isObtuse(R, Q, P)) {
Q = R;
continue;
}
// otherwise all angles are acute, and the MBC is determined by the triangle PQR
extremalPts.push_back(P);
extremalPts.push_back(Q);
extremalPts.push_back(R);
return;
}
// never get here
throw util::GEOSException("Logic failure in MinimumBoundingCircle algorithm!");
}
/*private*/
Coordinate
MinimumBoundingCircle::lowestPoint(std::vector<Coordinate>& pts)
{
const Coordinate* min = &(pts[0]);
for(const auto& pt : pts) {
if(pt.y < min->y) {
min = &pt;
}
}
return *min;
}
/*private*/
Coordinate
MinimumBoundingCircle::pointWitMinAngleWithX(std::vector<Coordinate>& pts, Coordinate& P)
{
double minSin = std::numeric_limits<double>::max();
Coordinate minAngPt;
minAngPt.setNull();
for(const auto& p : pts) {
if(p == P) {
continue;
}
/*
* The sin of the angle is a simpler proxy for the angle itself
*/
double dx = p.x - P.x;
double dy = p.y - P.y;
if(dy < 0) {
dy = -dy;
}
double len = sqrt(dx * dx + dy * dy);
double sin = dy / len;
if(sin < minSin) {
minSin = sin;
minAngPt = p;
}
}
return minAngPt;
}
/*private*/
Coordinate
MinimumBoundingCircle::pointWithMinAngleWithSegment(std::vector<Coordinate>& pts, Coordinate& P, Coordinate& Q)
{
assert(!pts.empty());
double minAng = std::numeric_limits<double>::max();
const Coordinate* minAngPt = &pts[0];
for(const auto& p : pts) {
if(p == P) {
continue;
}
if(p == Q) {
continue;
}
double ang = Angle::angleBetween(P, p, Q);
if(ang < minAng) {
minAng = ang;
minAngPt = &p;
}
}
return *minAngPt;
}
} // namespace geos.algorithm
} // namespace geos