forked from pytorch/FBGEMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ConvUnifiedBenchmark.cc
380 lines (340 loc) · 11.4 KB
/
ConvUnifiedBenchmark.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
/*
* Copyright (c) Facebook, Inc. and its affiliates.
* All rights reserved.
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <algorithm>
#include <chrono>
#include <cmath>
#include <iomanip>
#include <iostream>
#include <numeric>
#include <random>
#include <vector>
#ifdef _OPENMP
#include <omp.h>
#endif
#include "./BenchUtils.h"
#include "fbgemm/Fbgemm.h"
#include "src/RefImplementations.h"
using namespace std;
using namespace fbgemm;
// clang-format off
// 2D conv shapes
vector<conv_param_t<2>> shapes_2d = {
// MB, IC, OC, IH, IW, G, KH, KW, stride_h, stride_w,
// pad_h_top, pad_w_left, pad_h_bottom, pad_w_right
// 2D convolutions
// regular
conv_param_t<>(1, 128, 128, {56, 56}, 1, {3, 3},
{1, 1}, {1, 1, 1, 1}),
// regular with dilation
conv_param_t<>(1, 128, 128, {56, 56}, 1, {3, 3},
{1, 1}, {1, 1, 1, 1}, {2, 2}),
// groupwise
conv_param_t<>(1, 128, 128, {56, 56}, 32, {3, 3},
{1, 1}, {1, 1, 1, 1}),
// DW
conv_param_t<>(1, 272, 272, {47, 125}, 272, {3, 3},
{1, 1}, {1, 1, 1, 1}),
// Pointwise
conv_param_t<>(1, 128, 128, {56, 56}, 1, {1, 1},
{1, 1}, {0, 0, 0, 0})
};
// 3D conv shapes
vector<conv_param_t<3>> shapes_3d = {
// MB, IC, OC, {IT, IH, IW}, G, {KT, KH, KW}, {stride_t, stride_h,
// stride_w},
// {pad_prev, pad_h_top, pad_w_left, pad_next, pad_h_bottom, pad_w_right}
// Regular
conv_param_t<3>(1, 64, 64, {8, 14, 14}, 1, {3, 3, 3},
{1, 1, 1}, {1, 1, 1, 1, 1, 1}),
//With dilations
conv_param_t<3>(1, 64, 64, {8, 14, 14}, 1, {3, 3, 3},
{1, 1, 1}, {1, 1, 1, 1, 1, 1}, {2, 2, 2}),
// Groupwise
conv_param_t<3>(32, 192, 192, {2, 28, 28}, 96, {3, 3, 3},
{2, 2, 2}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(32, 192, 192, {1, 14, 14}, 96, {3, 3, 3},
{1, 1, 1}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(32, 384, 384, {1, 14, 14}, 192, {3, 3, 3},
{1, 2, 2}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(32, 384, 384, {1, 7, 7}, 192, {3, 3, 3},
{1, 1, 1}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(32, 16, 16, {4, 56, 56}, 8, {3, 3, 3},
{1, 1, 1}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(32, 16, 16, {2, 28, 28}, 8, {3, 3, 3},
{1, 1, 1}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(32, 32, 32, {4, 56, 56}, 16, {3, 3, 3},
{2, 2, 2}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(32, 32, 32, {2, 28, 28}, 16, {3, 3, 3},
{1, 1, 1}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(32, 32, 32, {2, 28, 28}, 16, {3, 3, 3},
{2, 2, 2}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(32, 32, 32, {1, 14, 14}, 16, {3, 3, 3},
{1, 1, 1}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(32, 128, 128, {2, 28, 28}, 32, {3, 3, 3},
{2, 2, 2}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(32, 128, 128, {1, 14, 14}, 32, {3, 3, 3},
{1, 1, 1}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(32, 256, 256, {1, 14, 14}, 64, {3, 3, 3},
{1, 2, 2}, {1, 1, 1, 1, 1, 1}),
conv_param_t<3>(32, 256, 256, {1, 7, 7}, 64, {3, 3, 3},
{1, 1, 1}, {1, 1, 1, 1, 1, 1}),
// Depthwise
conv_param_t<3>(1, 64, 64, {8, 14, 14}, 64, {3, 3, 3},
{1, 1, 1}, {1, 1, 1, 1, 1, 1}),
// Pointwise
conv_param_t<3>(1, 128, 128, {8, 14, 14}, 1, {1, 1, 1},
{1, 1, 1}, {0, 0, 0, 0})
};
// clang-format on
template <int SPATIAL_DIM, typename Acc_t>
void performance_test(const vector<conv_param_t<SPATIAL_DIM>>& shapes) {
bool flush = true;
std::vector<char> llc;
if (flush) {
llc.resize(128 * 1024 * 1024, 1.0);
}
constexpr int NWARMUP = 4;
constexpr int NITER = 10;
string header = "MB, IC, OC, ";
if (SPATIAL_DIM == 3) {
header += "IT, ";
}
header += "IH, IW, G, ";
if (SPATIAL_DIM == 3) {
header += "KT, ";
}
header += "KH, KW, ";
if (SPATIAL_DIM == 3) {
header += "stride_t, ";
}
header += "stride_h, stride_w, ";
if (SPATIAL_DIM == 3) {
header += "pad_t, ";
}
header += "pad_h, pad_w, ";
if (SPATIAL_DIM == 3) {
header += "dilation_t, ";
}
header += "dilation_h, dilation_w, ";
header += "Type, M, N, K, ";
#ifdef FBGEMM_MEASURE_TIME_BREAKDOWN
cout << "WARNING: the timer may be inaccurate when used by multiple threads."
<< endl;
cout << header << "Im2Col (ms), "
<< "Packing (ms), "
<< "Kernel (ms), "
<< "Postprocessing (ms), "
<< "fbgemmPacked (ms), "
<< "Total (ms), "
<< "GOPS" << endl;
#else
cout << setw(6) << header << setw(5) << "GOPS" << endl;
#endif
chrono::time_point<chrono::high_resolution_clock> begin, end;
for (auto conv_p : shapes) {
if (conv_p.IC % conv_p.G != 0 || conv_p.OC % conv_p.G != 0) {
// invalid shapes
continue;
}
int im_in_dim = accumulate(
conv_p.IN_DIM.begin(), conv_p.IN_DIM.end(), 1, multiplies<int>());
aligned_vector<uint8_t> Aint8(conv_p.MB * im_in_dim * conv_p.IC);
int kernel_dim =
accumulate(conv_p.K.begin(), conv_p.K.end(), 1, multiplies<int>());
aligned_vector<int8_t> Bint8(
kernel_dim * conv_p.IC * (conv_p.OC / conv_p.G));
aligned_vector<int8_t> Bint8_tr(
kernel_dim * conv_p.IC * (conv_p.OC / conv_p.G));
int im_out_dim = accumulate(
conv_p.OUT_DIM.begin(), conv_p.OUT_DIM.end(), 1, multiplies<int>());
aligned_vector<int32_t> Cint32_ref(conv_p.MB * im_out_dim * conv_p.OC);
aligned_vector<uint8_t> Cint8_ref(Cint32_ref.size(), 0);
aligned_vector<int32_t> Cint32_fb(Cint32_ref.size());
aligned_vector<uint8_t> Cint8_fb(Cint32_ref.size(), 0);
aligned_vector<uint8_t> Cint8_fb2(Cint32_ref.size(), 0);
aligned_vector<int32_t> Cint32_fb2(Cint32_ref.size());
// A matrix (input activations)
randFill<uint8_t>(Aint8, 0, 5);
int32_t Aint8_zero_point = 4;
// B matrix (weights)
randFill<int8_t>(Bint8, -4, 4);
aligned_vector<int32_t> Bint8_zero_point(1);
randFill(Bint8_zero_point, -3, -1);
aligned_vector<float> C_multiplier(Bint8_zero_point.size());
randFill(C_multiplier, 0.1234f / 2, 0.1234f * 3 / 2);
int32_t C_zero_point = 5;
// reference implementation
// conv_ref expects weights to be in G (R S C/G) K/G
transposeConvWeights<SPATIAL_DIM>(conv_p, Bint8.data(), Bint8_tr.data());
conv_ref(
conv_p,
Aint8.data(),
Aint8_zero_point,
Bint8_tr.data(),
Cint32_ref.data());
// matrix dimensions after im2col
int MDim = conv_p.MB * im_out_dim;
int NDim = conv_p.OC / conv_p.G;
int KDim = kernel_dim * conv_p.IC;
int KDimPerGroup = KDim / conv_p.G;
int OC_per_G = conv_p.OC / conv_p.G;
// computing row offset
vector<int32_t> row_offsets(MDim);
vector<uint8_t> Aint8_im2col(MDim * KDim);
im2col_ref(conv_p, Aint8.data(), Aint8_zero_point, Aint8_im2col.data());
// computing column offset
vector<int32_t> col_offsets(conv_p.OC);
for (int g = 0; g < conv_p.G; ++g) {
col_offsets_with_zero_pt_s8acc32_ref(
KDimPerGroup,
OC_per_G,
OC_per_G,
Bint8_tr.data() + g * KDimPerGroup * OC_per_G,
Bint8_zero_point.data(),
col_offsets.data() + g * OC_per_G,
conv_p.OC);
}
for (int g = 0; g < conv_p.G; ++g) {
row_offsets_u8acc32_ref(
MDim,
KDimPerGroup,
KDim,
Aint8_im2col.data() + g * KDimPerGroup,
row_offsets.data());
requantize_u8acc32_ref(
MDim,
NDim,
conv_p.G * NDim,
Cint32_ref.data() + g * NDim,
Cint8_ref.data() + g * NDim,
C_multiplier.data() + g * NDim / conv_p.OC,
C_zero_point,
Aint8_zero_point,
Bint8_zero_point.data() + g * NDim / conv_p.OC,
row_offsets.data(),
col_offsets.data() + g * NDim,
nullptr,
conv_p.OC);
}
double nops = 2.0 * static_cast<double>(NITER) * MDim * NDim * KDim;
double ttot = 0.0;
string runType;
PackWeightsForConv<SPATIAL_DIM> packedB(conv_p, Bint8.data());
runType = "UniConv";
ttot = 0;
#ifdef FBGEMM_MEASURE_TIME_BREAKDOWN
double im2col_time = 0.0;
double total_im2col_time = 0.0;
double total_packing_time = 0.0;
double total_computing_time = 0.0;
double total_kernel_time = 0.0;
double total_postprocessing_time = 0.0;
double total_run_time = 0.0;
#endif
for (auto i = 0; i < NWARMUP + NITER; ++i) {
#ifdef FBGEMM_MEASURE_TIME_BREAKDOWN
packing_time = 0.0;
computing_time = 0.0;
kernel_time = 0.0;
postprocessing_time = 0.0;
run_time = 0.0;
#endif
llc_flush(llc);
begin = chrono::high_resolution_clock::now();
#ifdef _OPENMP
#pragma omp parallel
#endif
{
int num_threads = fbgemm_get_num_threads();
int tid = fbgemm_get_thread_num();
// no-op output process objects
DoNothing<> doNothingObj{};
ReQuantizeOutput<false, QuantizationGranularity::TENSOR> outputProcObj(
doNothingObj,
C_multiplier.data(),
C_zero_point,
Aint8_zero_point,
Bint8_zero_point.data(),
nullptr, // row offsets
col_offsets.data(),
nullptr, // bias
conv_p.OC,
conv_p.G);
fbgemmConv(
conv_p,
Aint8.data(),
packedB,
Cint8_fb.data(),
Cint32_fb.data(),
outputProcObj,
tid,
num_threads);
}
end = chrono::high_resolution_clock::now();
if (i >= NWARMUP) {
auto dur = chrono::duration_cast<chrono::nanoseconds>(end - begin);
ttot += dur.count();
#ifdef FBGEMM_MEASURE_TIME_BREAKDOWN
total_packing_time += packing_time;
total_computing_time += computing_time;
total_kernel_time += kernel_time;
total_postprocessing_time += postprocessing_time;
total_run_time += run_time;
#endif
}
}
cout << conv_p.MB << ", " << conv_p.IC << ", " << conv_p.OC << ", ";
for (int i = 0; i < SPATIAL_DIM; ++i) {
cout << conv_p.IN_DIM[i] << ", ";
}
cout << conv_p.G << ", ";
for (int i = 0; i < SPATIAL_DIM; ++i) {
cout << conv_p.K[i] << ", ";
}
for (int i = 0; i < SPATIAL_DIM; ++i) {
cout << conv_p.stride[i] << ", ";
}
for (int i = 0; i < SPATIAL_DIM; ++i) {
cout << conv_p.pad[i] << ", ";
}
for (int i = 0; i < SPATIAL_DIM; ++i) {
cout << conv_p.dilation[i] << ", ";
}
cout << setw(13) << runType << ", " << setw(5) << fixed << setw(5)
<< setw(6) << MDim << ", " << setw(6) << NDim << ", " << setw(6)
<< KDim << ", ";
#ifdef FBGEMM_MEASURE_TIME_BREAKDOWN
cout << fixed << setprecision(6) << setw(8) << 0 << ", "
<< total_packing_time / (double)NITER / 1e6 << ", "
<< total_kernel_time / (double)NITER / 1e6 << ", "
<< total_postprocessing_time / (double)NITER / 1e6 << ", "
<< total_run_time / (double)NITER / 1e6 << ", "
<< ttot / (double)NITER / 1e6 << ", ";
#endif
cout << setprecision(2) << nops / ttot << endl;
compare_buffers(
Cint8_ref.data(),
Cint8_fb.data(),
MDim,
NDim * conv_p.G,
NDim * conv_p.G,
5);
} // shapes
}
int main() {
#ifdef _OPENMP
// Use 1 thread unless OMP_NUM_THREADS is explicit set.
const char* val = getenv("OMP_NUM_THREADS");
if (val == nullptr || !*val) {
omp_set_num_threads(1);
}
#endif
// performance_test<int16_t>();
performance_test<2, int32_t>(shapes_2d);
performance_test<3, int32_t>(shapes_3d);
return 0;
}