forked from pytorch/FBGEMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
QuantUtilsAvx2.cc
1311 lines (1206 loc) · 50.3 KB
/
QuantUtilsAvx2.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (c) Facebook, Inc. and its affiliates.
* All rights reserved.
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#define FBGEMM_EXPORTS
#include "fbgemm/QuantUtilsAvx2.h"
#include <immintrin.h>
#include <algorithm> //for std::min/std::max
#include <cmath> //for nearbyint
#include <limits> //for numeric_limits
#include "./MaskAvx2.h"
#include "fbgemm/Fbgemm.h" //for ReQuantizeOutput
namespace fbgemm {
using namespace std;
////////////////////////////////////////////////////////////////////////////////
// Utility functions
template <typename T>
void QuantizeAvx2(
const float* src,
T* dst,
int len,
const TensorQuantizationParams& qparams) {
#if defined(__AVX2__) && (defined(__FMA__) || defined(_MSC_VER))
constexpr int VLEN = 8;
constexpr float min_val = std::numeric_limits<T>::min();
constexpr float max_val = std::numeric_limits<T>::max();
std::size_t i = 0;
float inverse_scale = 1.f / qparams.scale;
__m256 inverse_scale_v = _mm256_set1_ps(inverse_scale);
__m256i shuffle_mask_v = _mm256_set_epi8(
0xff,
0xff,
0xff,
0xff,
0xff,
0xff,
0xff,
0xff,
0xff,
0xff,
0xff,
0xff,
0x0c,
0x08,
0x04,
0x00,
0xff,
0xff,
0xff,
0xff,
0xff,
0xff,
0xff,
0xff,
0xff,
0xff,
0xff,
0xff,
0x0c,
0x08,
0x04,
0x00);
__m256i permute_mask_v =
_mm256_set_epi32(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00);
for (; i < len / VLEN * VLEN; i += VLEN) {
__m256 src_v = _mm256_loadu_ps(src + i);
__m256 transformed_v = _mm256_fmadd_ps(
src_v, inverse_scale_v, _mm256_set1_ps(qparams.zero_point));
__m256 clipped_v = _mm256_min_ps(
_mm256_max_ps(transformed_v, _mm256_set1_ps(min_val)),
_mm256_set1_ps(max_val));
__m256i rounded_v = _mm256_cvtps_epi32(clipped_v);
// An instruction sequence to save 8 32-bit integers as 8 8-bit integers
rounded_v = _mm256_shuffle_epi8(rounded_v, shuffle_mask_v);
rounded_v = _mm256_permutevar8x32_epi32(rounded_v, permute_mask_v);
_mm_storel_epi64(
reinterpret_cast<__m128i*>(dst + i), _mm256_castsi256_si128(rounded_v));
}
// Handle remainder using mask instructions so that
// the main loop and remainder loop have the same behavior
int rem = len - i;
if (rem > 0) {
__m256i mask_v = _mm256_load_si256(reinterpret_cast<const __m256i*>(
internal::avx2_ps_or_epi32_masks[rem]));
__m128i store_mask_v = _mm_load_si128(
reinterpret_cast<const __m128i*>(internal::sse_epi8_masks[rem]));
__m256 src_v = _mm256_maskload_ps(src + i, mask_v);
__m256 transformed_v = _mm256_fmadd_ps(
src_v, inverse_scale_v, _mm256_set1_ps(qparams.zero_point));
__m256 clipped_v = _mm256_min_ps(
_mm256_max_ps(transformed_v, _mm256_set1_ps(min_val)),
_mm256_set1_ps(max_val));
__m256i rounded_v = _mm256_cvtps_epi32(clipped_v);
// An instruction sequence to save "rem" number of 32-bit integers
// as "rem" number of 8-bit integers
rounded_v = _mm256_shuffle_epi8(rounded_v, shuffle_mask_v);
rounded_v = _mm256_permutevar8x32_epi32(rounded_v, permute_mask_v);
_mm_maskmoveu_si128(
_mm256_castsi256_si128(rounded_v),
store_mask_v,
reinterpret_cast<char*>(dst + i));
}
#endif
}
// Instantiate QuantizeAvx2 for known datatypes
template void QuantizeAvx2<uint8_t>(
const float* src,
uint8_t* dst,
int len,
const TensorQuantizationParams& qparams);
template void QuantizeAvx2<int8_t>(
const float* src,
int8_t* dst,
int len,
const TensorQuantizationParams& qparams);
void FindMinMax(const float* a, float* min, float* max, int len) {
if (len <= 0) {
*min = 0.0f;
*max = 0.0f;
return;
}
float temp_min = *a, temp_max = *a;
int i = 0;
#ifdef __AVX__
__m256 min_v = _mm256_set1_ps(*a), max_v = _mm256_set1_ps(*a);
constexpr int VLEN = 8;
if (len >= VLEN) {
for (; i < len / VLEN * VLEN; i += VLEN) {
min_v = _mm256_min_ps(min_v, _mm256_loadu_ps(a + i));
max_v = _mm256_max_ps(max_v, _mm256_loadu_ps(a + i));
}
float min_buf[VLEN], max_buf[VLEN];
_mm256_storeu_ps(min_buf, min_v);
_mm256_storeu_ps(max_buf, max_v);
for (int j = 0; j < VLEN; ++j) {
temp_min = std::min(temp_min, min_buf[j]);
temp_max = std::max(temp_max, max_buf[j]);
}
}
#endif
for (; i < len; i++) {
temp_min = std::min(temp_min, a[i]);
temp_max = std::max(temp_max, a[i]);
}
*min = temp_min;
*max = temp_max;
}
////////////////////////////////////////////////////////////////////////////////
// Requantization (with floats)
#ifdef __AVX2__
void RequantizeAvx2(
const int32_t* src,
uint8_t* dst,
int len,
const RequantizationParams& params) {
DoNothing<> doNothingObj{};
int32_t Bq_zero_point[] = {0};
ReQuantizeOutput<false /* FUSE_RELU */> requantizeObj(
doNothingObj,
¶ms.real_multiplier,
params.target_qparams.zero_point,
0, // Aq_zero_point
Bq_zero_point, // Bq_zero_point
nullptr, // row_offsets
nullptr, // col_offsets
nullptr, // bias
len); // ncol
requantizeObj.f<inst_set_t::avx2>(dst, src, {0, 1, 0, len}, 0, 0);
}
void RequantizeFixedPointAvx2(
const int32_t* src,
uint8_t* dst,
int len,
const RequantizationParams& params) {
constexpr int VLEN = 8;
__m256i b = _mm256_set1_epi32(params.multiplier);
// AVX2 doesn't support arithmetic right shift.
// As a work around, we convert 64-bit multiplied results to uint64_t by
// adding 0x8000000000000000ULL, logical right shift, and subtract by
// (0x8000000000000000ULL >> right_shift).
__m256i pre_shift_nudge = _mm256_set1_epi64x(
(1ll << (params.right_shift - 1)) + 0x8000000000000000ULL);
__m256i post_shift_nudge = _mm256_set1_epi64x(
params.target_qparams.zero_point -
(0x8000000000000000ULL >> params.right_shift));
__m256i min_v = _mm256_set1_epi32(numeric_limits<uint8_t>::min());
__m256i max_v = _mm256_set1_epi32(numeric_limits<uint8_t>::max());
__m256i shuffle_mask_v = _mm256_set_epi8(
0xff,
0xff,
0xff,
0xff,
0xff,
0xff,
0xff,
0xff,
0xff,
0xff,
0xff,
0xff,
0x0c,
0x08,
0x04,
0x00,
0xff,
0xff,
0xff,
0xff,
0xff,
0xff,
0xff,
0xff,
0xff,
0xff,
0xff,
0xff,
0x0c,
0x08,
0x04,
0x00);
__m256i permute_mask_v =
_mm256_set_epi32(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00);
int i = 0;
for (; i < len / VLEN * VLEN; i += VLEN) {
__m256i a_v = _mm256_loadu_si256((const __m256i*)(src + i));
// a = a0 | a1 | a2 | a3 | a4 | a5 | a6 | a7
// b = b0 | b1 | b3 | b3 | b4 | b5 | b6 | b7
__m256i a_even_v = a_v;
__m256i a_odd_v = _mm256_srli_si256(a_v, 4);
__m256i ab_even_v = _mm256_mul_epi32(a_even_v, b);
__m256i ab_odd_v = _mm256_mul_epi32(a_odd_v, b);
__m256i even_rounded_v = _mm256_add_epi64(ab_even_v, pre_shift_nudge);
__m256i odd_rounded_v = _mm256_add_epi64(ab_odd_v, pre_shift_nudge);
__m256i even_result_v = _mm256_add_epi64(
_mm256_srli_epi64(even_rounded_v, params.right_shift),
post_shift_nudge);
__m256i odd_result_v = _mm256_add_epi64(
_mm256_srli_epi64(odd_rounded_v, params.right_shift), post_shift_nudge);
odd_result_v = _mm256_slli_si256(odd_result_v, 4);
// even_result_v has numbers we want in its even 32-bit SIMD lanes, and
// odd_result_v has numbers we want in its odd 32-bit SIMD lanes.
// Use blend to combine them.
__m256i result_v = _mm256_blend_epi32(even_result_v, odd_result_v, 0xaa);
__m256i clipped_v =
_mm256_max_epi32(min_v, _mm256_min_epi32(max_v, result_v));
clipped_v = _mm256_shuffle_epi8(clipped_v, shuffle_mask_v);
clipped_v = _mm256_permutevar8x32_epi32(clipped_v, permute_mask_v);
*(int64_t*)(dst + i) = _mm256_extract_epi64(clipped_v, 0);
}
for (; i < len; ++i) {
int64_t ab_64 =
static_cast<int64_t>(src[i]) * static_cast<int64_t>(params.multiplier);
int64_t nudge = 1ll << std::max(0, params.right_shift - 1);
int64_t quantized_down = params.target_qparams.zero_point +
((ab_64 + nudge) >> params.right_shift);
dst[i] = std::min<int64_t>(std::max<int64_t>(quantized_down, 0l), 255l);
}
}
#endif
template <
bool A_SYMMETRIC,
bool B_SYMMETRIC,
QuantizationGranularity Q_GRAN,
bool HAS_BIAS,
bool FUSE_RELU,
typename BIAS_TYPE>
void requantizeOutputProcessingAvx2(
uint8_t* out,
const int32_t* inp,
const block_type_t& block,
int ld_out,
int ld_in,
const requantizationParams_t<BIAS_TYPE>& r) {
// Adoption of implementation at QNNPACK/src/requantization/fp32-sse2.c
// using AVX2 instructions
int quant_param_idx = 0;
if (Q_GRAN == QuantizationGranularity::GROUP) {
int ncol_per_group = r.ncols / r.groups;
int g = block.col_start / ncol_per_group;
quant_param_idx = g;
}
__m256 multiplier_v = _mm256_set1_ps(r.C_multiplier[quant_param_idx]);
// Broadcasted reciprocal of act_times_w_scale
__m256 act_times_w_rcp_v;
if (!(Q_GRAN == QuantizationGranularity::OUT_CHANNEL)) {
if (is_same<BIAS_TYPE, float>::value) {
act_times_w_rcp_v =
_mm256_set1_ps(1.0 / r.act_times_w_scale[quant_param_idx]);
}
}
__m256i min_v = _mm256_set1_epi8(static_cast<uint8_t>(0));
__m256i max_v = _mm256_set1_epi8(static_cast<uint8_t>(255));
assert(
(A_SYMMETRIC == (r.A_zero_point == 0)) &&
"A_SYMMETRIC == true if and only if A_zero_point == 0");
assert(
(B_SYMMETRIC ==
((Q_GRAN == QuantizationGranularity::TENSOR && r.B_zero_point[0] == 0) ||
r.row_offsets == nullptr)) &&
"B_SYMMETRIC == true if and only if B_zero_point == 0 "
"or r.row_offsets == nullptr");
assert(
(HAS_BIAS == (r.bias != nullptr)) &&
"HAS_BIAS == true if and only if bias != nullptr");
__m256i A_zero_point_v = _mm256_set1_epi32(r.A_zero_point);
__m256i C_zero_point_epi16_v = _mm256_set1_epi16(r.C_zero_point);
__m256i C_zero_point_epi8_v = _mm256_set1_epi8(r.C_zero_point);
__m256i permute_mask_v =
_mm256_set_epi32(0x07, 0x03, 0x06, 0x02, 0x05, 0x01, 0x04, 0x00);
constexpr int VLEN = 8;
for (int i = block.row_start; i < block.row_start + block.row_size; ++i) {
// Scale row_offset with Bq_zero_point
int32_t row_offset = 0;
if (B_SYMMETRIC) {
row_offset = 0;
} else if (
Q_GRAN == QuantizationGranularity::TENSOR ||
Q_GRAN == QuantizationGranularity::GROUP) {
row_offset =
r.row_offsets[i - block.row_start] * r.B_zero_point[quant_param_idx];
} else {
assert(
Q_GRAN == QuantizationGranularity::OUT_CHANNEL &&
"unknown quantization granularity");
}
__m256i row_offset_v = _mm256_set1_epi32(row_offset);
int j = block.col_start;
for (; j < block.col_start + (block.col_size / (VLEN * 4) * (VLEN * 4));
j += (VLEN * 4)) {
__m256i x_v = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(
inp + (i - block.row_start) * ld_in + (j - block.col_start)));
__m256i y_v = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(
inp + (i - block.row_start) * ld_in + (j - block.col_start) +
1 * VLEN));
__m256i z_v = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(
inp + (i - block.row_start) * ld_in + (j - block.col_start) +
2 * VLEN));
__m256i w_v = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(
inp + (i - block.row_start) * ld_in + (j - block.col_start) +
3 * VLEN));
if (!A_SYMMETRIC) {
__m256i col_off_v = _mm256_mullo_epi32(
A_zero_point_v,
_mm256_loadu_si256(
reinterpret_cast<const __m256i*>(r.col_offsets + j)));
x_v = _mm256_sub_epi32(x_v, col_off_v);
col_off_v = _mm256_mullo_epi32(
A_zero_point_v,
_mm256_loadu_si256(
reinterpret_cast<const __m256i*>(r.col_offsets + j + VLEN)));
y_v = _mm256_sub_epi32(y_v, col_off_v);
col_off_v = _mm256_mullo_epi32(
A_zero_point_v,
_mm256_loadu_si256(reinterpret_cast<const __m256i*>(
r.col_offsets + j + 2 * VLEN)));
z_v = _mm256_sub_epi32(z_v, col_off_v);
col_off_v = _mm256_mullo_epi32(
A_zero_point_v,
_mm256_loadu_si256(reinterpret_cast<const __m256i*>(
r.col_offsets + j + 3 * VLEN)));
w_v = _mm256_sub_epi32(w_v, col_off_v);
}
if (!B_SYMMETRIC) {
if (Q_GRAN == QuantizationGranularity::OUT_CHANNEL) {
row_offset_v = _mm256_mullo_epi32(
_mm256_set1_epi32(r.row_offsets[i - block.row_start]),
_mm256_loadu_si256(
reinterpret_cast<const __m256i*>(r.B_zero_point + j)));
}
x_v = _mm256_sub_epi32(x_v, row_offset_v);
if (Q_GRAN == QuantizationGranularity::OUT_CHANNEL) {
row_offset_v = _mm256_mullo_epi32(
_mm256_set1_epi32(r.row_offsets[i - block.row_start]),
_mm256_loadu_si256(
reinterpret_cast<const __m256i*>(r.B_zero_point + j + VLEN)));
}
y_v = _mm256_sub_epi32(y_v, row_offset_v);
if (Q_GRAN == QuantizationGranularity::OUT_CHANNEL) {
row_offset_v = _mm256_mullo_epi32(
_mm256_set1_epi32(r.row_offsets[i - block.row_start]),
_mm256_loadu_si256(reinterpret_cast<const __m256i*>(
r.B_zero_point + j + 2 * VLEN)));
}
z_v = _mm256_sub_epi32(z_v, row_offset_v);
if (Q_GRAN == QuantizationGranularity::OUT_CHANNEL) {
row_offset_v = _mm256_mullo_epi32(
_mm256_set1_epi32(r.row_offsets[i - block.row_start]),
_mm256_loadu_si256(reinterpret_cast<const __m256i*>(
r.B_zero_point + j + 3 * VLEN)));
}
w_v = _mm256_sub_epi32(w_v, row_offset_v);
}
__m256 xf_v, yf_v, zf_v, wf_v;
if (HAS_BIAS) {
if (is_same<BIAS_TYPE, float>::value) {
__m256 x_bias_v, y_bias_v, z_bias_v, w_bias_v;
if (Q_GRAN == QuantizationGranularity::OUT_CHANNEL) {
x_bias_v = _mm256_div_ps(
_mm256_loadu_ps(
reinterpret_cast<const float*>(r.bias + j + 0 * VLEN)),
_mm256_loadu_ps(r.act_times_w_scale + j + 0 * VLEN));
y_bias_v = _mm256_div_ps(
_mm256_loadu_ps(
reinterpret_cast<const float*>(r.bias + j + 1 * VLEN)),
_mm256_loadu_ps(r.act_times_w_scale + j + 1 * VLEN));
z_bias_v = _mm256_div_ps(
_mm256_loadu_ps(
reinterpret_cast<const float*>(r.bias + j + 2 * VLEN)),
_mm256_loadu_ps(r.act_times_w_scale + j + 2 * VLEN));
w_bias_v = _mm256_div_ps(
_mm256_loadu_ps(
reinterpret_cast<const float*>(r.bias + j + 3 * VLEN)),
_mm256_loadu_ps(r.act_times_w_scale + j + 3 * VLEN));
} else {
x_bias_v = _mm256_mul_ps(
_mm256_loadu_ps(
reinterpret_cast<const float*>(r.bias + j + 0 * VLEN)),
act_times_w_rcp_v);
y_bias_v = _mm256_mul_ps(
_mm256_loadu_ps(
reinterpret_cast<const float*>(r.bias + j + 1 * VLEN)),
act_times_w_rcp_v);
z_bias_v = _mm256_mul_ps(
_mm256_loadu_ps(
reinterpret_cast<const float*>(r.bias + j + 2 * VLEN)),
act_times_w_rcp_v);
w_bias_v = _mm256_mul_ps(
_mm256_loadu_ps(
reinterpret_cast<const float*>(r.bias + j + 3 * VLEN)),
act_times_w_rcp_v);
}
xf_v = _mm256_add_ps(_mm256_cvtepi32_ps(x_v), x_bias_v);
yf_v = _mm256_add_ps(_mm256_cvtepi32_ps(y_v), y_bias_v);
zf_v = _mm256_add_ps(_mm256_cvtepi32_ps(z_v), z_bias_v);
wf_v = _mm256_add_ps(_mm256_cvtepi32_ps(w_v), w_bias_v);
} else {
x_v = _mm256_add_epi32(
x_v,
_mm256_loadu_si256(
reinterpret_cast<const __m256i*>(r.bias + j + 0 * VLEN)));
y_v = _mm256_add_epi32(
y_v,
_mm256_loadu_si256(
reinterpret_cast<const __m256i*>(r.bias + j + 1 * VLEN)));
z_v = _mm256_add_epi32(
z_v,
_mm256_loadu_si256(
reinterpret_cast<const __m256i*>(r.bias + j + 2 * VLEN)));
w_v = _mm256_add_epi32(
w_v,
_mm256_loadu_si256(
reinterpret_cast<const __m256i*>(r.bias + j + 3 * VLEN)));
xf_v = _mm256_cvtepi32_ps(x_v);
yf_v = _mm256_cvtepi32_ps(y_v);
zf_v = _mm256_cvtepi32_ps(z_v);
wf_v = _mm256_cvtepi32_ps(w_v);
}
} else {
xf_v = _mm256_cvtepi32_ps(x_v);
yf_v = _mm256_cvtepi32_ps(y_v);
zf_v = _mm256_cvtepi32_ps(z_v);
wf_v = _mm256_cvtepi32_ps(w_v);
}
/*
* Convert int32_t input to FP32 and multiply by FP32 scale.
* Both operations involve statistically unbiased roundings (with
* default MXCSR rounding mode):
* - Large int32_t values can't be exactly represented as FP32.
* CVTDQ2PS instruction on x86 would round it according to nearest
* FP32 value with ties to even (assuming default MXCSR rounding
* mode).
* - Product of two FP32 values is generally not exactly
* representation as an FP32 value, and will be rounded to nearest
* FP32 value with ties to even with default MXCSR rounding mode.
*/
__m256 x_scaled_v, y_scaled_v, z_scaled_v, w_scaled_v;
if (Q_GRAN == QuantizationGranularity::OUT_CHANNEL) {
x_scaled_v =
_mm256_mul_ps(xf_v, _mm256_loadu_ps(r.C_multiplier + j + 0 * VLEN));
y_scaled_v =
_mm256_mul_ps(yf_v, _mm256_loadu_ps(r.C_multiplier + j + 1 * VLEN));
z_scaled_v =
_mm256_mul_ps(zf_v, _mm256_loadu_ps(r.C_multiplier + j + 2 * VLEN));
w_scaled_v =
_mm256_mul_ps(wf_v, _mm256_loadu_ps(r.C_multiplier + j + 3 * VLEN));
} else {
x_scaled_v = _mm256_mul_ps(xf_v, multiplier_v);
y_scaled_v = _mm256_mul_ps(yf_v, multiplier_v);
z_scaled_v = _mm256_mul_ps(zf_v, multiplier_v);
w_scaled_v = _mm256_mul_ps(wf_v, multiplier_v);
}
/*
* Convert scaled FP32 result to int32_t using CVTPS2DQ instruction.
* CVTPS2DQ instruction rounds result according to nearest FP32 value
* with ties to even (assuming default MXCSR rounding mode). However,
* when conversion overflows, it produces INT32_MIN as a result. For
* large positive inputs the result of conversion can become negative,
* which affects the final requantization result. Note that on x86
* SSE2 we have e.g. int32_t(float(INT32_MAX)) == INT32_MIN! This
* happens because float(INT32_MAX) rounds to 2**31, which overflows
* int32_t when it is converted back to integer.
*
* Thankfully, we can prove that overflow never happens in this
* requantization scheme. The largest positive input is INT32_MAX
* (2**31 - 1), which turns into 2**31 when converted to float. The
* largest scale value is 0x1.FFFFFEp-1. When multiplied together, the
* result is 2147483520 (compare to INT32_MAX = 2147483647), which
* fits into int32_t without overflow.
*/
__m256i x_rounded_v = _mm256_cvtps_epi32(x_scaled_v);
__m256i y_rounded_v = _mm256_cvtps_epi32(y_scaled_v);
__m256i z_rounded_v = _mm256_cvtps_epi32(z_scaled_v);
__m256i w_rounded_v = _mm256_cvtps_epi32(w_scaled_v);
/*
* Standard final sequence on x86 AVX2:
* - Pack to int16_t and saturate
* - Add zero point
* - Pack to uint8_t and saturate
* - Clamp between qmin and qmax
*/
__m256i xy_packed_v = _mm256_adds_epi16(
_mm256_packs_epi32(x_rounded_v, y_rounded_v), C_zero_point_epi16_v);
__m256i zw_packed_v = _mm256_adds_epi16(
_mm256_packs_epi32(z_rounded_v, w_rounded_v), C_zero_point_epi16_v);
__m256i xyzw_packed_v = _mm256_packus_epi16(xy_packed_v, zw_packed_v);
__m256i xyzw_clamped_v = _mm256_max_epu8(
FUSE_RELU ? C_zero_point_epi8_v : min_v,
_mm256_min_epu8(xyzw_packed_v, max_v));
/*
* xyzw_clamped_v has results in the following layout so we need to
* permute: x0-3 y0-3 z0-3 w0-3 x4-7 y4-7 z4-7 w4-7
*/
xyzw_clamped_v =
_mm256_permutevar8x32_epi32(xyzw_clamped_v, permute_mask_v);
/*
* 4x CVTDQ2PS
* 4x MULPS
* 4x CVTPS2DQ
* 2x PACKSSDW
* 1x PACKUSWB
* 2x PADDW
* 1x PMAXUB
* 1x PMINUB
* 1x PERMD
* ---------------------
* 20 instructions total
*/
_mm256_storeu_si256(
reinterpret_cast<__m256i*>(out + i * ld_out + j), xyzw_clamped_v);
} // j loop vectorized and unrolled 4x
for (; j < block.col_start + (block.col_size / VLEN * VLEN); j += VLEN) {
__m256i x_v = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(
inp + (i - block.row_start) * ld_in + (j - block.col_start)));
if (!A_SYMMETRIC) {
__m256i col_off_v = _mm256_mullo_epi32(
A_zero_point_v,
_mm256_loadu_si256(
reinterpret_cast<const __m256i*>(r.col_offsets + j)));
x_v = _mm256_sub_epi32(x_v, col_off_v);
}
if (!B_SYMMETRIC) {
if (Q_GRAN == QuantizationGranularity::OUT_CHANNEL) {
row_offset_v = _mm256_mullo_epi32(
_mm256_set1_epi32(r.row_offsets[i - block.row_start]),
_mm256_loadu_si256(
reinterpret_cast<const __m256i*>(r.B_zero_point + j)));
}
x_v = _mm256_sub_epi32(x_v, row_offset_v);
}
__m256 xf_v;
if (HAS_BIAS) {
if (is_same<BIAS_TYPE, float>::value) {
__m256 x_bias_v;
if (Q_GRAN == QuantizationGranularity::OUT_CHANNEL) {
x_bias_v = _mm256_div_ps(
_mm256_loadu_ps(reinterpret_cast<const float*>(r.bias + j)),
_mm256_loadu_ps(r.act_times_w_scale + j));
} else {
x_bias_v = _mm256_mul_ps(
_mm256_loadu_ps(reinterpret_cast<const float*>(r.bias + j)),
act_times_w_rcp_v);
}
xf_v = _mm256_add_ps(_mm256_cvtepi32_ps(x_v), x_bias_v);
} else {
x_v = _mm256_add_epi32(
x_v,
_mm256_loadu_si256(reinterpret_cast<const __m256i*>(r.bias + j)));
xf_v = _mm256_cvtepi32_ps(x_v);
}
} else {
xf_v = _mm256_cvtepi32_ps(x_v);
}
__m256 x_scaled_v;
if (Q_GRAN == QuantizationGranularity::OUT_CHANNEL) {
x_scaled_v = _mm256_mul_ps(xf_v, _mm256_loadu_ps(r.C_multiplier + j));
} else {
x_scaled_v = _mm256_mul_ps(xf_v, multiplier_v);
}
__m256i x_rounded_v = _mm256_cvtps_epi32(x_scaled_v);
__m256i x_packed_v = _mm256_adds_epi16(
_mm256_packs_epi32(x_rounded_v, _mm256_setzero_si256()),
C_zero_point_epi16_v);
x_packed_v = _mm256_packus_epi16(x_packed_v, _mm256_setzero_si256());
__m256i x_clamped_v = _mm256_max_epu8(
FUSE_RELU ? C_zero_point_epi8_v : min_v,
_mm256_min_epu8(x_packed_v, max_v));
/*
* x_clamped_v has results in the following layout so we need to
* permute: x0-3 garbage0-11 x4-7 garbage12-23
*/
x_clamped_v = _mm256_permutevar8x32_epi32(x_clamped_v, permute_mask_v);
/*
* 1x CVTDQ2PS
* 1x MULPS
* 1x CVTPS2DQ
* 1x PACKSSDW
* 1x PACKUSWB
* 1x PADDW
* 1x PMAXUB
* 1x PMINUB
* 1x PERMD
* ---------------------
* 9 instructions total
*/
_mm_storel_epi64(
reinterpret_cast<__m128i*>(out + i * ld_out + j),
_mm256_castsi256_si128(x_clamped_v));
} // j loop vectorized
int remainder = block.col_start + block.col_size - j;
if (remainder > 0) {
__m256i mask_v = _mm256_load_si256(reinterpret_cast<const __m256i*>(
internal::avx2_ps_or_epi32_masks[remainder]));
__m256i x_v = _mm256_maskload_epi32(
inp + (i - block.row_start) * ld_in + (j - block.col_start), mask_v);
if (!A_SYMMETRIC) {
__m256i col_off_v = _mm256_mullo_epi32(
A_zero_point_v, _mm256_maskload_epi32(r.col_offsets + j, mask_v));
x_v = _mm256_sub_epi32(x_v, col_off_v);
}
if (!B_SYMMETRIC) {
if (Q_GRAN == QuantizationGranularity::OUT_CHANNEL) {
row_offset_v = _mm256_mullo_epi32(
_mm256_set1_epi32(r.row_offsets[i - block.row_start]),
_mm256_maskload_epi32(r.B_zero_point + j, mask_v));
}
x_v = _mm256_sub_epi32(x_v, row_offset_v);
}
__m256 xf_v;
if (HAS_BIAS) {
if (is_same<BIAS_TYPE, float>::value) {
__m256 x_bias_v;
if (Q_GRAN == QuantizationGranularity::OUT_CHANNEL) {
x_bias_v = _mm256_div_ps(
_mm256_maskload_ps(
reinterpret_cast<const float*>(r.bias + j), mask_v),
_mm256_maskload_ps(r.act_times_w_scale + j, mask_v));
} else {
x_bias_v = _mm256_mul_ps(
_mm256_maskload_ps(
reinterpret_cast<const float*>(r.bias + j), mask_v),
act_times_w_rcp_v);
}
xf_v = _mm256_add_ps(_mm256_cvtepi32_ps(x_v), x_bias_v);
} else {
x_v = _mm256_add_epi32(
x_v,
_mm256_maskload_epi32(
reinterpret_cast<const int*>(r.bias + j), mask_v));
xf_v = _mm256_cvtepi32_ps(x_v);
}
} else {
xf_v = _mm256_cvtepi32_ps(x_v);
}
__m256 x_scaled_v;
if (Q_GRAN == QuantizationGranularity::OUT_CHANNEL) {
x_scaled_v =
_mm256_mul_ps(xf_v, _mm256_maskload_ps(r.C_multiplier + j, mask_v));
} else {
x_scaled_v = _mm256_mul_ps(xf_v, multiplier_v);
}
__m256i x_rounded_v = _mm256_cvtps_epi32(x_scaled_v);
__m256i x_packed_v = _mm256_adds_epi16(
_mm256_packs_epi32(x_rounded_v, _mm256_setzero_si256()),
C_zero_point_epi16_v);
x_packed_v = _mm256_packus_epi16(x_packed_v, _mm256_setzero_si256());
__m256i x_clamped_v = _mm256_max_epu8(
FUSE_RELU ? C_zero_point_epi8_v : min_v,
_mm256_min_epu8(x_packed_v, max_v));
/*
* x_clamped_v has results in the following layout so we need to
* permute: x0-3 garbage0-11 x4-7 garbage12-23
*/
x_clamped_v = _mm256_permutevar8x32_epi32(x_clamped_v, permute_mask_v);
/*
* 1x CVTDQ2PS
* 1x MULPS
* 1x CVTPS2DQ
* 1x PACKSSDW
* 1x PACKUSWB
* 1x PADDW
* 1x PMAXUB
* 1x PMINUB
* 1x PERMD
* ---------------------
* 9 instructions total
*/
alignas(64) uint8_t x_clamped_buffer[32];
_mm256_store_si256(
reinterpret_cast<__m256i*>(x_clamped_buffer), x_clamped_v);
for (int k = 0; k < remainder; ++k) {
out[i * ld_out + j + k] = x_clamped_buffer[k];
}
} // j loop remainder
} // i loop
}
template <
bool A_SYMMETRIC,
bool B_SYMMETRIC,
QuantizationGranularity Q_GRAN,
bool HAS_BIAS,
bool FUSE_RELU>
void requantizeForFloatAvx2(
float* out,
const int32_t* inp,
const block_type_t& block,
int ld_out,
int ld_in,
const requantizationForFloatParams_t& r) {
// Adoption of implementation at QNNPACK/src/requantization/fp32-sse2.c
// using AVX2 instructions
int quant_param_idx = 0;
if (Q_GRAN == QuantizationGranularity::GROUP) {
int ncol_per_group = r.ncols / r.groups;
int g = block.col_start / ncol_per_group;
quant_param_idx = g;
}
__m256 multiplier_v = _mm256_set1_ps(r.A_scale * r.B_scale[quant_param_idx]);
assert(
(A_SYMMETRIC == (r.A_zero_point == 0)) &&
"A_SYMMETRIC == true if and only if A_zero_point == 0");
assert(
(B_SYMMETRIC ==
((Q_GRAN == QuantizationGranularity::TENSOR && r.B_zero_point[0] == 0) ||
r.row_offsets == nullptr)) &&
"B_SYMMETRIC == true if and only if B_zero_point == 0 "
"or r.row_offsets == nullptr");
assert(
(HAS_BIAS == (r.bias != nullptr)) &&
"HAS_BIAS == true if and only if bias != nullptr");
__m256i A_zero_point_v = _mm256_set1_epi32(r.A_zero_point);
constexpr int VLEN = 8;
for (int i = block.row_start; i < block.row_start + block.row_size; ++i) {
// Scale row_offset with Bq_zero_point
int32_t row_offset = 0;
if (B_SYMMETRIC) {
row_offset = 0;
} else if (
Q_GRAN == QuantizationGranularity::TENSOR ||
Q_GRAN == QuantizationGranularity::GROUP) {
row_offset =
r.row_offsets[i - block.row_start] * r.B_zero_point[quant_param_idx];
} else {
assert(
Q_GRAN == QuantizationGranularity::OUT_CHANNEL &&
"unknown quantization granularity");
}
__m256i row_offset_v = _mm256_set1_epi32(row_offset);
int j = block.col_start;
for (; j < block.col_start + (block.col_size / VLEN * VLEN); j += VLEN) {
__m256i x_v = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(
inp + (i - block.row_start) * ld_in + (j - block.col_start)));
if (!A_SYMMETRIC) {
__m256i col_off_v = _mm256_mullo_epi32(
A_zero_point_v,
_mm256_loadu_si256(
reinterpret_cast<const __m256i*>(r.col_offsets + j)));
x_v = _mm256_sub_epi32(x_v, col_off_v);
}
if (!B_SYMMETRIC) {
if (Q_GRAN == QuantizationGranularity::OUT_CHANNEL) {
row_offset_v = _mm256_mullo_epi32(
_mm256_set1_epi32(r.row_offsets[i - block.row_start]),
_mm256_loadu_si256(
reinterpret_cast<const __m256i*>(r.B_zero_point + j)));
}
x_v = _mm256_sub_epi32(x_v, row_offset_v);
}
__m256 x_scaled_v;
if (Q_GRAN == QuantizationGranularity::OUT_CHANNEL) {
x_scaled_v = _mm256_mul_ps(
_mm256_cvtepi32_ps(x_v),
_mm256_mul_ps(
_mm256_set1_ps(r.A_scale), _mm256_loadu_ps(r.B_scale + j)));
} else {
x_scaled_v = _mm256_mul_ps(_mm256_cvtepi32_ps(x_v), multiplier_v);
}
if (HAS_BIAS) {
x_scaled_v = _mm256_add_ps(x_scaled_v, _mm256_loadu_ps(r.bias + j));
}
if (FUSE_RELU) {
x_scaled_v = _mm256_max_ps(_mm256_setzero_ps(), x_scaled_v);
}
_mm256_storeu_ps(out + i * ld_out + j, x_scaled_v);
} // j loop vectorized
int remainder = block.col_start + block.col_size - j;
if (remainder > 0) {
__m256i mask_v = _mm256_load_si256(reinterpret_cast<const __m256i*>(
internal::avx2_ps_or_epi32_masks[remainder]));
__m256i x_v = _mm256_maskload_epi32(
inp + (i - block.row_start) * ld_in + (j - block.col_start), mask_v);
if (!A_SYMMETRIC) {
__m256i col_off_v = _mm256_mullo_epi32(
A_zero_point_v, _mm256_maskload_epi32(r.col_offsets + j, mask_v));
x_v = _mm256_sub_epi32(x_v, col_off_v);
}
if (!B_SYMMETRIC) {
if (Q_GRAN == QuantizationGranularity::OUT_CHANNEL) {
row_offset_v = _mm256_mullo_epi32(
_mm256_set1_epi32(r.row_offsets[i - block.row_start]),
_mm256_maskload_epi32(r.B_zero_point + j, mask_v));
}
x_v = _mm256_sub_epi32(x_v, row_offset_v);
}
__m256 x_scaled_v;
if (Q_GRAN == QuantizationGranularity::OUT_CHANNEL) {
x_scaled_v = _mm256_mul_ps(
_mm256_cvtepi32_ps(x_v),
_mm256_mul_ps(
_mm256_set1_ps(r.A_scale),
_mm256_maskload_ps(r.B_scale + j, mask_v)));
} else {
x_scaled_v = _mm256_mul_ps(_mm256_cvtepi32_ps(x_v), multiplier_v);
}
if (HAS_BIAS) {
x_scaled_v =
_mm256_add_ps(x_scaled_v, _mm256_maskload_ps(r.bias + j, mask_v));
}
if (FUSE_RELU) {
x_scaled_v = _mm256_max_ps(_mm256_setzero_ps(), x_scaled_v);
}
_mm256_maskstore_ps(out + i * ld_out + j, mask_v, x_scaled_v);
} // j loop remainder
} // i loop
}
template <
bool A_SYMMETRIC,
bool B_SYMMETRIC,
QuantizationGranularity Q_GRAN,
bool HAS_BIAS,
bool FUSE_RELU,
int C_PER_G,
typename BIAS_TYPE>
void requantizeOutputProcessingGConvAvx2(
uint8_t* out,
const int32_t* inp,
const block_type_t& block,
int ld_out,
int ld_in,
const requantizationParams_t<BIAS_TYPE>& r) {
// Adoption of implementation at QNNPACK/src/requantization/fp32-sse2.c
// using AVX2 instructions
int quant_param_idx = 0;
if (Q_GRAN == QuantizationGranularity::GROUP) {
int ncol_per_group = r.ncols / r.groups;
int g = block.col_start / ncol_per_group;
quant_param_idx = g;
}
__m256 multiplier_v = _mm256_set1_ps(r.C_multiplier[quant_param_idx]);
// Broadcasted reciprocal of act_times_w_scale
__m256 act_times_w_rcp_v;
if (!(Q_GRAN == QuantizationGranularity::OUT_CHANNEL)) {
if (is_same<BIAS_TYPE, float>::value) {
act_times_w_rcp_v =
_mm256_set1_ps(1.0 / r.act_times_w_scale[quant_param_idx]);
}
}
__m256i min_v = _mm256_set1_epi8(static_cast<uint8_t>(0));
__m256i max_v = _mm256_set1_epi8(static_cast<uint8_t>(255));
assert(
(A_SYMMETRIC == (r.A_zero_point == 0)) &&
"A_SYMMETRIC == true if and only if A_zero_point == 0");
assert(
(B_SYMMETRIC ==
((Q_GRAN == QuantizationGranularity::TENSOR && r.B_zero_point[0] == 0) ||
r.row_offsets == nullptr)) &&
"B_SYMMETRIC == true if and only if B_zero_point == 0 "
"or r.row_offsets == nullptr");
assert(
(HAS_BIAS == (r.bias != nullptr)) &&
"HAS_BIAS == true if and only if bias != nullptr");
__m256i A_zero_point_v = _mm256_set1_epi32(r.A_zero_point);
__m256i C_zero_point_epi16_v = _mm256_set1_epi16(r.C_zero_point);
__m256i C_zero_point_epi8_v = _mm256_set1_epi8(r.C_zero_point);
__m256i permute_mask_v =
_mm256_set_epi32(0x07, 0x03, 0x06, 0x02, 0x05, 0x01, 0x04, 0x00);
constexpr int VLEN = 8;
for (int i = block.row_start; i < block.row_start + block.row_size; ++i) {
int j = block.col_start;
for (; j < block.col_start + (block.col_size / VLEN * VLEN); j += VLEN) {
__m256i x_v = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(
inp + (i - block.row_start) * ld_in + (j - block.col_start)));
if (!A_SYMMETRIC) {
__m256i col_off_v = _mm256_mullo_epi32(
A_zero_point_v,
_mm256_loadu_si256(
reinterpret_cast<const __m256i*>(r.col_offsets + j)));
x_v = _mm256_sub_epi32(x_v, col_off_v);
}
if (!B_SYMMETRIC) {
__m256i row_offset_v;
if (C_PER_G == 2) {
// When C_PER_G == 2, we need to handle 4 groups at a time to fully
// utilize 32B AVX2 vector register (C_PER_G * 4 * sizeof(int32_t) ==
// 32B)