forked from mrdoob/three.js
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTriangle.js
289 lines (181 loc) · 6.01 KB
/
Triangle.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import { Vector3 } from './Vector3.js';
const _v0 = /*@__PURE__*/ new Vector3();
const _v1 = /*@__PURE__*/ new Vector3();
const _v2 = /*@__PURE__*/ new Vector3();
const _v3 = /*@__PURE__*/ new Vector3();
const _vab = /*@__PURE__*/ new Vector3();
const _vac = /*@__PURE__*/ new Vector3();
const _vbc = /*@__PURE__*/ new Vector3();
const _vap = /*@__PURE__*/ new Vector3();
const _vbp = /*@__PURE__*/ new Vector3();
const _vcp = /*@__PURE__*/ new Vector3();
class Triangle {
constructor( a = new Vector3(), b = new Vector3(), c = new Vector3() ) {
this.a = a;
this.b = b;
this.c = c;
}
static getNormal( a, b, c, target ) {
target.subVectors( c, b );
_v0.subVectors( a, b );
target.cross( _v0 );
const targetLengthSq = target.lengthSq();
if ( targetLengthSq > 0 ) {
return target.multiplyScalar( 1 / Math.sqrt( targetLengthSq ) );
}
return target.set( 0, 0, 0 );
}
// static/instance method to calculate barycentric coordinates
// based on: http://www.blackpawn.com/texts/pointinpoly/default.html
static getBarycoord( point, a, b, c, target ) {
_v0.subVectors( c, a );
_v1.subVectors( b, a );
_v2.subVectors( point, a );
const dot00 = _v0.dot( _v0 );
const dot01 = _v0.dot( _v1 );
const dot02 = _v0.dot( _v2 );
const dot11 = _v1.dot( _v1 );
const dot12 = _v1.dot( _v2 );
const denom = ( dot00 * dot11 - dot01 * dot01 );
// collinear or singular triangle
if ( denom === 0 ) {
// arbitrary location outside of triangle?
// not sure if this is the best idea, maybe should be returning undefined
return target.set( - 2, - 1, - 1 );
}
const invDenom = 1 / denom;
const u = ( dot11 * dot02 - dot01 * dot12 ) * invDenom;
const v = ( dot00 * dot12 - dot01 * dot02 ) * invDenom;
// barycentric coordinates must always sum to 1
return target.set( 1 - u - v, v, u );
}
static containsPoint( point, a, b, c ) {
this.getBarycoord( point, a, b, c, _v3 );
return ( _v3.x >= 0 ) && ( _v3.y >= 0 ) && ( ( _v3.x + _v3.y ) <= 1 );
}
static getUV( point, p1, p2, p3, uv1, uv2, uv3, target ) {
this.getBarycoord( point, p1, p2, p3, _v3 );
target.set( 0, 0 );
target.addScaledVector( uv1, _v3.x );
target.addScaledVector( uv2, _v3.y );
target.addScaledVector( uv3, _v3.z );
return target;
}
static isFrontFacing( a, b, c, direction ) {
_v0.subVectors( c, b );
_v1.subVectors( a, b );
// strictly front facing
return ( _v0.cross( _v1 ).dot( direction ) < 0 ) ? true : false;
}
set( a, b, c ) {
this.a.copy( a );
this.b.copy( b );
this.c.copy( c );
return this;
}
setFromPointsAndIndices( points, i0, i1, i2 ) {
this.a.copy( points[ i0 ] );
this.b.copy( points[ i1 ] );
this.c.copy( points[ i2 ] );
return this;
}
clone() {
return new this.constructor().copy( this );
}
copy( triangle ) {
this.a.copy( triangle.a );
this.b.copy( triangle.b );
this.c.copy( triangle.c );
return this;
}
getArea() {
_v0.subVectors( this.c, this.b );
_v1.subVectors( this.a, this.b );
return _v0.cross( _v1 ).length() * 0.5;
}
getMidpoint( target ) {
return target.addVectors( this.a, this.b ).add( this.c ).multiplyScalar( 1 / 3 );
}
getNormal( target ) {
return Triangle.getNormal( this.a, this.b, this.c, target );
}
getPlane( target ) {
return target.setFromCoplanarPoints( this.a, this.b, this.c );
}
getBarycoord( point, target ) {
return Triangle.getBarycoord( point, this.a, this.b, this.c, target );
}
getUV( point, uv1, uv2, uv3, target ) {
return Triangle.getUV( point, this.a, this.b, this.c, uv1, uv2, uv3, target );
}
containsPoint( point ) {
return Triangle.containsPoint( point, this.a, this.b, this.c );
}
isFrontFacing( direction ) {
return Triangle.isFrontFacing( this.a, this.b, this.c, direction );
}
intersectsBox( box ) {
return box.intersectsTriangle( this );
}
closestPointToPoint( p, target ) {
const a = this.a, b = this.b, c = this.c;
let v, w;
// algorithm thanks to Real-Time Collision Detection by Christer Ericson,
// published by Morgan Kaufmann Publishers, (c) 2005 Elsevier Inc.,
// under the accompanying license; see chapter 5.1.5 for detailed explanation.
// basically, we're distinguishing which of the voronoi regions of the triangle
// the point lies in with the minimum amount of redundant computation.
_vab.subVectors( b, a );
_vac.subVectors( c, a );
_vap.subVectors( p, a );
const d1 = _vab.dot( _vap );
const d2 = _vac.dot( _vap );
if ( d1 <= 0 && d2 <= 0 ) {
// vertex region of A; barycentric coords (1, 0, 0)
return target.copy( a );
}
_vbp.subVectors( p, b );
const d3 = _vab.dot( _vbp );
const d4 = _vac.dot( _vbp );
if ( d3 >= 0 && d4 <= d3 ) {
// vertex region of B; barycentric coords (0, 1, 0)
return target.copy( b );
}
const vc = d1 * d4 - d3 * d2;
if ( vc <= 0 && d1 >= 0 && d3 <= 0 ) {
v = d1 / ( d1 - d3 );
// edge region of AB; barycentric coords (1-v, v, 0)
return target.copy( a ).addScaledVector( _vab, v );
}
_vcp.subVectors( p, c );
const d5 = _vab.dot( _vcp );
const d6 = _vac.dot( _vcp );
if ( d6 >= 0 && d5 <= d6 ) {
// vertex region of C; barycentric coords (0, 0, 1)
return target.copy( c );
}
const vb = d5 * d2 - d1 * d6;
if ( vb <= 0 && d2 >= 0 && d6 <= 0 ) {
w = d2 / ( d2 - d6 );
// edge region of AC; barycentric coords (1-w, 0, w)
return target.copy( a ).addScaledVector( _vac, w );
}
const va = d3 * d6 - d5 * d4;
if ( va <= 0 && ( d4 - d3 ) >= 0 && ( d5 - d6 ) >= 0 ) {
_vbc.subVectors( c, b );
w = ( d4 - d3 ) / ( ( d4 - d3 ) + ( d5 - d6 ) );
// edge region of BC; barycentric coords (0, 1-w, w)
return target.copy( b ).addScaledVector( _vbc, w ); // edge region of BC
}
// face region
const denom = 1 / ( va + vb + vc );
// u = va * denom
v = vb * denom;
w = vc * denom;
return target.copy( a ).addScaledVector( _vab, v ).addScaledVector( _vac, w );
}
equals( triangle ) {
return triangle.a.equals( this.a ) && triangle.b.equals( this.b ) && triangle.c.equals( this.c );
}
}
export { Triangle };