forked from lh3/bwa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bwamem.c
1263 lines (1169 loc) · 48 KB
/
bwamem.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* The MIT License
Copyright (c) 2018- Dana-Farber Cancer Institute
2009-2018 Broad Institute, Inc.
2008-2009 Genome Research Ltd. (GRL)
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <assert.h>
#include <limits.h>
#include <math.h>
#ifdef HAVE_PTHREAD
#include <pthread.h>
#endif
#include "kstring.h"
#include "bwamem.h"
#include "bntseq.h"
#include "ksw.h"
#include "kvec.h"
#include "ksort.h"
#include "utils.h"
#ifdef USE_MALLOC_WRAPPERS
# include "malloc_wrap.h"
#endif
/* Theory on probability and scoring *ungapped* alignment
*
* s'(a,b) = log[P(b|a)/P(b)] = log[4P(b|a)], assuming uniform base distribution
* s'(a,a) = log(4), s'(a,b) = log(4e/3), where e is the error rate
*
* Scale s'(a,b) to s(a,a) s.t. s(a,a)=x. Then s(a,b) = x*s'(a,b)/log(4), or conversely: s'(a,b)=s(a,b)*log(4)/x
*
* If the matching score is x and mismatch penalty is -y, we can compute error rate e:
* e = .75 * exp[-log(4) * y/x]
*
* log P(seq) = \sum_i log P(b_i|a_i) = \sum_i {s'(a,b) - log(4)}
* = \sum_i { s(a,b)*log(4)/x - log(4) } = log(4) * (S/x - l)
*
* where S=\sum_i s(a,b) is the alignment score. Converting to the phred scale:
* Q(seq) = -10/log(10) * log P(seq) = 10*log(4)/log(10) * (l - S/x) = 6.02 * (l - S/x)
*
*
* Gap open (zero gap): q' = log[P(gap-open)], r' = log[P(gap-ext)] (see Durbin et al. (1998) Section 4.1)
* Then q = x*log[P(gap-open)]/log(4), r = x*log[P(gap-ext)]/log(4)
*
* When there are gaps, l should be the length of alignment matches (i.e. the M operator in CIGAR)
*/
static const bntseq_t *global_bns = 0; // for debugging only
mem_opt_t *mem_opt_init()
{
mem_opt_t *o;
o = calloc(1, sizeof(mem_opt_t));
o->flag = 0;
o->a = 1; o->b = 4;
o->o_del = o->o_ins = 6;
o->e_del = o->e_ins = 1;
o->w = 100;
o->T = 30;
o->zdrop = 100;
o->pen_unpaired = 17;
o->pen_clip5 = o->pen_clip3 = 5;
o->max_mem_intv = 20;
o->min_seed_len = 19;
o->split_width = 10;
o->max_occ = 500;
o->max_chain_gap = 10000;
o->max_ins = 10000;
o->mask_level = 0.50;
o->drop_ratio = 0.50;
o->XA_drop_ratio = 0.80;
o->split_factor = 1.5;
o->chunk_size = 10000000;
o->n_threads = 1;
o->max_XA_hits = 5;
o->max_XA_hits_alt = 200;
o->max_matesw = 50;
o->mask_level_redun = 0.95;
o->min_chain_weight = 0;
o->max_chain_extend = 1<<30;
o->mapQ_coef_len = 50; o->mapQ_coef_fac = log(o->mapQ_coef_len);
bwa_fill_scmat(o->a, o->b, o->mat);
return o;
}
/***************************
* Collection SA invervals *
***************************/
#define intv_lt(a, b) ((a).info < (b).info)
KSORT_INIT(mem_intv, bwtintv_t, intv_lt)
typedef struct {
bwtintv_v mem, mem1, *tmpv[2];
} smem_aux_t;
static smem_aux_t *smem_aux_init()
{
smem_aux_t *a;
a = calloc(1, sizeof(smem_aux_t));
a->tmpv[0] = calloc(1, sizeof(bwtintv_v));
a->tmpv[1] = calloc(1, sizeof(bwtintv_v));
return a;
}
static void smem_aux_destroy(smem_aux_t *a)
{
free(a->tmpv[0]->a); free(a->tmpv[0]);
free(a->tmpv[1]->a); free(a->tmpv[1]);
free(a->mem.a); free(a->mem1.a);
free(a);
}
static void mem_collect_intv(const mem_opt_t *opt, const bwt_t *bwt, int len, const uint8_t *seq, smem_aux_t *a)
{
int i, k, x = 0, old_n;
int start_width = 1;
int split_len = (int)(opt->min_seed_len * opt->split_factor + .499);
a->mem.n = 0;
// first pass: find all SMEMs
while (x < len) {
if (seq[x] < 4) {
x = bwt_smem1(bwt, len, seq, x, start_width, &a->mem1, a->tmpv);
for (i = 0; i < a->mem1.n; ++i) {
bwtintv_t *p = &a->mem1.a[i];
int slen = (uint32_t)p->info - (p->info>>32); // seed length
if (slen >= opt->min_seed_len)
kv_push(bwtintv_t, a->mem, *p);
}
} else ++x;
}
// second pass: find MEMs inside a long SMEM
old_n = a->mem.n;
for (k = 0; k < old_n; ++k) {
bwtintv_t *p = &a->mem.a[k];
int start = p->info>>32, end = (int32_t)p->info;
if (end - start < split_len || p->x[2] > opt->split_width) continue;
bwt_smem1(bwt, len, seq, (start + end)>>1, p->x[2]+1, &a->mem1, a->tmpv);
for (i = 0; i < a->mem1.n; ++i)
if ((uint32_t)a->mem1.a[i].info - (a->mem1.a[i].info>>32) >= opt->min_seed_len)
kv_push(bwtintv_t, a->mem, a->mem1.a[i]);
}
// third pass: LAST-like
if (opt->max_mem_intv > 0) {
x = 0;
while (x < len) {
if (seq[x] < 4) {
if (1) {
bwtintv_t m;
x = bwt_seed_strategy1(bwt, len, seq, x, opt->min_seed_len, opt->max_mem_intv, &m);
if (m.x[2] > 0) kv_push(bwtintv_t, a->mem, m);
} else { // for now, we never come to this block which is slower
x = bwt_smem1a(bwt, len, seq, x, start_width, opt->max_mem_intv, &a->mem1, a->tmpv);
for (i = 0; i < a->mem1.n; ++i)
kv_push(bwtintv_t, a->mem, a->mem1.a[i]);
}
} else ++x;
}
}
// sort
ks_introsort(mem_intv, a->mem.n, a->mem.a);
}
/************
* Chaining *
************/
typedef struct {
int64_t rbeg;
int32_t qbeg, len;
int score;
} mem_seed_t; // unaligned memory
typedef struct {
int n, m, first, rid;
uint32_t w:29, kept:2, is_alt:1;
float frac_rep;
int64_t pos;
mem_seed_t *seeds;
} mem_chain_t;
typedef struct { size_t n, m; mem_chain_t *a; } mem_chain_v;
#include "kbtree.h"
#define chain_cmp(a, b) (((b).pos < (a).pos) - ((a).pos < (b).pos))
KBTREE_INIT(chn, mem_chain_t, chain_cmp)
// return 1 if the seed is merged into the chain
static int test_and_merge(const mem_opt_t *opt, int64_t l_pac, mem_chain_t *c, const mem_seed_t *p, int seed_rid)
{
int64_t qend, rend, x, y;
const mem_seed_t *last = &c->seeds[c->n-1];
qend = last->qbeg + last->len;
rend = last->rbeg + last->len;
if (seed_rid != c->rid) return 0; // different chr; request a new chain
if (p->qbeg >= c->seeds[0].qbeg && p->qbeg + p->len <= qend && p->rbeg >= c->seeds[0].rbeg && p->rbeg + p->len <= rend)
return 1; // contained seed; do nothing
if ((last->rbeg < l_pac || c->seeds[0].rbeg < l_pac) && p->rbeg >= l_pac) return 0; // don't chain if on different strand
x = p->qbeg - last->qbeg; // always non-negtive
y = p->rbeg - last->rbeg;
if (y >= 0 && x - y <= opt->w && y - x <= opt->w && x - last->len < opt->max_chain_gap && y - last->len < opt->max_chain_gap) { // grow the chain
if (c->n == c->m) {
c->m <<= 1;
c->seeds = realloc(c->seeds, c->m * sizeof(mem_seed_t));
}
c->seeds[c->n++] = *p;
return 1;
}
return 0; // request to add a new chain
}
int mem_chain_weight(const mem_chain_t *c)
{
int64_t end;
int j, w = 0, tmp;
for (j = 0, end = 0; j < c->n; ++j) {
const mem_seed_t *s = &c->seeds[j];
if (s->qbeg >= end) w += s->len;
else if (s->qbeg + s->len > end) w += s->qbeg + s->len - end;
end = end > s->qbeg + s->len? end : s->qbeg + s->len;
}
tmp = w; w = 0;
for (j = 0, end = 0; j < c->n; ++j) {
const mem_seed_t *s = &c->seeds[j];
if (s->rbeg >= end) w += s->len;
else if (s->rbeg + s->len > end) w += s->rbeg + s->len - end;
end = end > s->rbeg + s->len? end : s->rbeg + s->len;
}
w = w < tmp? w : tmp;
return w < 1<<30? w : (1<<30)-1;
}
void mem_print_chain(const bntseq_t *bns, mem_chain_v *chn)
{
int i, j;
for (i = 0; i < chn->n; ++i) {
mem_chain_t *p = &chn->a[i];
err_printf("* Found CHAIN(%d): n=%d; weight=%d", i, p->n, mem_chain_weight(p));
for (j = 0; j < p->n; ++j) {
bwtint_t pos;
int is_rev;
pos = bns_depos(bns, p->seeds[j].rbeg, &is_rev);
if (is_rev) pos -= p->seeds[j].len - 1;
err_printf("\t%d;%d;%d,%ld(%s:%c%ld)", p->seeds[j].score, p->seeds[j].len, p->seeds[j].qbeg, (long)p->seeds[j].rbeg, bns->anns[p->rid].name, "+-"[is_rev], (long)(pos - bns->anns[p->rid].offset) + 1);
}
err_putchar('\n');
}
}
mem_chain_v mem_chain(const mem_opt_t *opt, const bwt_t *bwt, const bntseq_t *bns, int len, const uint8_t *seq, void *buf)
{
int i, b, e, l_rep;
int64_t l_pac = bns->l_pac;
mem_chain_v chain;
kbtree_t(chn) *tree;
smem_aux_t *aux;
kv_init(chain);
if (len < opt->min_seed_len) return chain; // if the query is shorter than the seed length, no match
tree = kb_init(chn, KB_DEFAULT_SIZE);
aux = buf? (smem_aux_t*)buf : smem_aux_init();
mem_collect_intv(opt, bwt, len, seq, aux);
for (i = 0, b = e = l_rep = 0; i < aux->mem.n; ++i) { // compute frac_rep
bwtintv_t *p = &aux->mem.a[i];
int sb = (p->info>>32), se = (uint32_t)p->info;
if (p->x[2] <= opt->max_occ) continue;
if (sb > e) l_rep += e - b, b = sb, e = se;
else e = e > se? e : se;
}
l_rep += e - b;
for (i = 0; i < aux->mem.n; ++i) {
bwtintv_t *p = &aux->mem.a[i];
int step, count, slen = (uint32_t)p->info - (p->info>>32); // seed length
int64_t k;
// if (slen < opt->min_seed_len) continue; // ignore if too short or too repetitive
step = p->x[2] > opt->max_occ? p->x[2] / opt->max_occ : 1;
for (k = count = 0; k < p->x[2] && count < opt->max_occ; k += step, ++count) {
mem_chain_t tmp, *lower, *upper;
mem_seed_t s;
int rid, to_add = 0;
s.rbeg = tmp.pos = bwt_sa(bwt, p->x[0] + k); // this is the base coordinate in the forward-reverse reference
s.qbeg = p->info>>32;
s.score= s.len = slen;
rid = bns_intv2rid(bns, s.rbeg, s.rbeg + s.len);
if (rid < 0) continue; // bridging multiple reference sequences or the forward-reverse boundary; TODO: split the seed; don't discard it!!!
if (kb_size(tree)) {
kb_intervalp(chn, tree, &tmp, &lower, &upper); // find the closest chain
if (!lower || !test_and_merge(opt, l_pac, lower, &s, rid)) to_add = 1;
} else to_add = 1;
if (to_add) { // add the seed as a new chain
tmp.n = 1; tmp.m = 4;
tmp.seeds = calloc(tmp.m, sizeof(mem_seed_t));
tmp.seeds[0] = s;
tmp.rid = rid;
tmp.is_alt = !!bns->anns[rid].is_alt;
kb_putp(chn, tree, &tmp);
}
}
}
if (buf == 0) smem_aux_destroy(aux);
kv_resize(mem_chain_t, chain, kb_size(tree));
#define traverse_func(p_) (chain.a[chain.n++] = *(p_))
__kb_traverse(mem_chain_t, tree, traverse_func);
#undef traverse_func
for (i = 0; i < chain.n; ++i) chain.a[i].frac_rep = (float)l_rep / len;
if (bwa_verbose >= 4) printf("* fraction of repetitive seeds: %.3f\n", (float)l_rep / len);
kb_destroy(chn, tree);
return chain;
}
/********************
* Filtering chains *
********************/
#define chn_beg(ch) ((ch).seeds->qbeg)
#define chn_end(ch) ((ch).seeds[(ch).n-1].qbeg + (ch).seeds[(ch).n-1].len)
#define flt_lt(a, b) ((a).w > (b).w)
KSORT_INIT(mem_flt, mem_chain_t, flt_lt)
int mem_chain_flt(const mem_opt_t *opt, int n_chn, mem_chain_t *a)
{
int i, k;
kvec_t(int) chains = {0,0,0}; // this keeps int indices of the non-overlapping chains
if (n_chn == 0) return 0; // no need to filter
// compute the weight of each chain and drop chains with small weight
for (i = k = 0; i < n_chn; ++i) {
mem_chain_t *c = &a[i];
c->first = -1; c->kept = 0;
c->w = mem_chain_weight(c);
if (c->w < opt->min_chain_weight) free(c->seeds);
else a[k++] = *c;
}
n_chn = k;
ks_introsort(mem_flt, n_chn, a);
// pairwise chain comparisons
a[0].kept = 3;
kv_push(int, chains, 0);
for (i = 1; i < n_chn; ++i) {
int large_ovlp = 0;
for (k = 0; k < chains.n; ++k) {
int j = chains.a[k];
int b_max = chn_beg(a[j]) > chn_beg(a[i])? chn_beg(a[j]) : chn_beg(a[i]);
int e_min = chn_end(a[j]) < chn_end(a[i])? chn_end(a[j]) : chn_end(a[i]);
if (e_min > b_max && (!a[j].is_alt || a[i].is_alt)) { // have overlap; don't consider ovlp where the kept chain is ALT while the current chain is primary
int li = chn_end(a[i]) - chn_beg(a[i]);
int lj = chn_end(a[j]) - chn_beg(a[j]);
int min_l = li < lj? li : lj;
if (e_min - b_max >= min_l * opt->mask_level && min_l < opt->max_chain_gap) { // significant overlap
large_ovlp = 1;
if (a[j].first < 0) a[j].first = i; // keep the first shadowed hit s.t. mapq can be more accurate
if (a[i].w < a[j].w * opt->drop_ratio && a[j].w - a[i].w >= opt->min_seed_len<<1)
break;
}
}
}
if (k == chains.n) {
kv_push(int, chains, i);
a[i].kept = large_ovlp? 2 : 3;
}
}
for (i = 0; i < chains.n; ++i) {
mem_chain_t *c = &a[chains.a[i]];
if (c->first >= 0) a[c->first].kept = 1;
}
free(chains.a);
for (i = k = 0; i < n_chn; ++i) { // don't extend more than opt->max_chain_extend .kept=1/2 chains
if (a[i].kept == 0 || a[i].kept == 3) continue;
if (++k >= opt->max_chain_extend) break;
}
for (; i < n_chn; ++i)
if (a[i].kept < 3) a[i].kept = 0;
for (i = k = 0; i < n_chn; ++i) { // free discarded chains
mem_chain_t *c = &a[i];
if (c->kept == 0) free(c->seeds);
else a[k++] = a[i];
}
return k;
}
/******************************
* De-overlap single-end hits *
******************************/
#define alnreg_slt2(a, b) ((a).re < (b).re)
KSORT_INIT(mem_ars2, mem_alnreg_t, alnreg_slt2)
#define alnreg_slt(a, b) ((a).score > (b).score || ((a).score == (b).score && ((a).rb < (b).rb || ((a).rb == (b).rb && (a).qb < (b).qb))))
KSORT_INIT(mem_ars, mem_alnreg_t, alnreg_slt)
#define alnreg_hlt(a, b) ((a).score > (b).score || ((a).score == (b).score && ((a).is_alt < (b).is_alt || ((a).is_alt == (b).is_alt && (a).hash < (b).hash))))
KSORT_INIT(mem_ars_hash, mem_alnreg_t, alnreg_hlt)
#define alnreg_hlt2(a, b) ((a).is_alt < (b).is_alt || ((a).is_alt == (b).is_alt && ((a).score > (b).score || ((a).score == (b).score && (a).hash < (b).hash))))
KSORT_INIT(mem_ars_hash2, mem_alnreg_t, alnreg_hlt2)
#define PATCH_MAX_R_BW 0.05f
#define PATCH_MIN_SC_RATIO 0.90f
int mem_patch_reg(const mem_opt_t *opt, const bntseq_t *bns, const uint8_t *pac, uint8_t *query, const mem_alnreg_t *a, const mem_alnreg_t *b, int *_w)
{
int w, score, q_s, r_s;
double r;
if (bns == 0 || pac == 0 || query == 0) return 0;
assert(a->rid == b->rid && a->rb <= b->rb);
if (a->rb < bns->l_pac && b->rb >= bns->l_pac) return 0; // on different strands
if (a->qb >= b->qb || a->qe >= b->qe || a->re >= b->re) return 0; // not colinear
w = (a->re - b->rb) - (a->qe - b->qb); // required bandwidth
w = w > 0? w : -w; // l = abs(l)
r = (double)(a->re - b->rb) / (b->re - a->rb) - (double)(a->qe - b->qb) / (b->qe - a->qb); // relative bandwidth
r = r > 0.? r : -r; // r = fabs(r)
if (bwa_verbose >= 4)
printf("* potential hit merge between [%d,%d)<=>[%ld,%ld) and [%d,%d)<=>[%ld,%ld), @ %s; w=%d, r=%.4g\n",
a->qb, a->qe, (long)a->rb, (long)a->re, b->qb, b->qe, (long)b->rb, (long)b->re, bns->anns[a->rid].name, w, r);
if (a->re < b->rb || a->qe < b->qb) { // no overlap on query or on ref
if (w > opt->w<<1 || r >= PATCH_MAX_R_BW) return 0; // the bandwidth or the relative bandwidth is too large
} else if (w > opt->w<<2 || r >= PATCH_MAX_R_BW*2) return 0; // more permissive if overlapping on both ref and query
// global alignment
w += a->w + b->w;
w = w < opt->w<<2? w : opt->w<<2;
if (bwa_verbose >= 4) printf("* test potential hit merge with global alignment; w=%d\n", w);
bwa_gen_cigar2(opt->mat, opt->o_del, opt->e_del, opt->o_ins, opt->e_ins, w, bns->l_pac, pac, b->qe - a->qb, query + a->qb, a->rb, b->re, &score, 0, 0);
q_s = (int)((double)(b->qe - a->qb) / ((b->qe - b->qb) + (a->qe - a->qb)) * (b->score + a->score) + .499); // predicted score from query
r_s = (int)((double)(b->re - a->rb) / ((b->re - b->rb) + (a->re - a->rb)) * (b->score + a->score) + .499); // predicted score from ref
if (bwa_verbose >= 4) printf("* score=%d;(%d,%d)\n", score, q_s, r_s);
if ((double)score / (q_s > r_s? q_s : r_s) < PATCH_MIN_SC_RATIO) return 0;
*_w = w;
return score;
}
int mem_sort_dedup_patch(const mem_opt_t *opt, const bntseq_t *bns, const uint8_t *pac, uint8_t *query, int n, mem_alnreg_t *a)
{
int m, i, j;
if (n <= 1) return n;
ks_introsort(mem_ars2, n, a); // sort by the END position, not START!
for (i = 0; i < n; ++i) a[i].n_comp = 1;
for (i = 1; i < n; ++i) {
mem_alnreg_t *p = &a[i];
if (p->rid != a[i-1].rid || p->rb >= a[i-1].re + opt->max_chain_gap) continue; // then no need to go into the loop below
for (j = i - 1; j >= 0 && p->rid == a[j].rid && p->rb < a[j].re + opt->max_chain_gap; --j) {
mem_alnreg_t *q = &a[j];
int64_t or, oq, mr, mq;
int score, w;
if (q->qe == q->qb) continue; // a[j] has been excluded
or = q->re - p->rb; // overlap length on the reference
oq = q->qb < p->qb? q->qe - p->qb : p->qe - q->qb; // overlap length on the query
mr = q->re - q->rb < p->re - p->rb? q->re - q->rb : p->re - p->rb; // min ref len in alignment
mq = q->qe - q->qb < p->qe - p->qb? q->qe - q->qb : p->qe - p->qb; // min qry len in alignment
if (or > opt->mask_level_redun * mr && oq > opt->mask_level_redun * mq) { // one of the hits is redundant
if (p->score < q->score) {
p->qe = p->qb;
break;
} else q->qe = q->qb;
} else if (q->rb < p->rb && (score = mem_patch_reg(opt, bns, pac, query, q, p, &w)) > 0) { // then merge q into p
p->n_comp += q->n_comp + 1;
p->seedcov = p->seedcov > q->seedcov? p->seedcov : q->seedcov;
p->sub = p->sub > q->sub? p->sub : q->sub;
p->csub = p->csub > q->csub? p->csub : q->csub;
p->qb = q->qb, p->rb = q->rb;
p->truesc = p->score = score;
p->w = w;
q->qb = q->qe;
}
}
}
for (i = 0, m = 0; i < n; ++i) // exclude identical hits
if (a[i].qe > a[i].qb) {
if (m != i) a[m++] = a[i];
else ++m;
}
n = m;
ks_introsort(mem_ars, n, a);
for (i = 1; i < n; ++i) { // mark identical hits
if (a[i].score == a[i-1].score && a[i].rb == a[i-1].rb && a[i].qb == a[i-1].qb)
a[i].qe = a[i].qb;
}
for (i = 1, m = 1; i < n; ++i) // exclude identical hits
if (a[i].qe > a[i].qb) {
if (m != i) a[m++] = a[i];
else ++m;
}
return m;
}
typedef kvec_t(int) int_v;
static void mem_mark_primary_se_core(const mem_opt_t *opt, int n, mem_alnreg_t *a, int_v *z)
{ // similar to the loop in mem_chain_flt()
int i, k, tmp;
tmp = opt->a + opt->b;
tmp = opt->o_del + opt->e_del > tmp? opt->o_del + opt->e_del : tmp;
tmp = opt->o_ins + opt->e_ins > tmp? opt->o_ins + opt->e_ins : tmp;
z->n = 0;
kv_push(int, *z, 0);
for (i = 1; i < n; ++i) {
for (k = 0; k < z->n; ++k) {
int j = z->a[k];
int b_max = a[j].qb > a[i].qb? a[j].qb : a[i].qb;
int e_min = a[j].qe < a[i].qe? a[j].qe : a[i].qe;
if (e_min > b_max) { // have overlap
int min_l = a[i].qe - a[i].qb < a[j].qe - a[j].qb? a[i].qe - a[i].qb : a[j].qe - a[j].qb;
if (e_min - b_max >= min_l * opt->mask_level) { // significant overlap
if (a[j].sub == 0) a[j].sub = a[i].score;
if (a[j].score - a[i].score <= tmp && (a[j].is_alt || !a[i].is_alt))
++a[j].sub_n;
break;
}
}
}
if (k == z->n) kv_push(int, *z, i);
else a[i].secondary = z->a[k];
}
}
int mem_mark_primary_se(const mem_opt_t *opt, int n, mem_alnreg_t *a, int64_t id)
{
int i, n_pri;
int_v z = {0,0,0};
if (n == 0) return 0;
for (i = n_pri = 0; i < n; ++i) {
a[i].sub = a[i].alt_sc = 0, a[i].secondary = a[i].secondary_all = -1, a[i].hash = hash_64(id+i);
if (!a[i].is_alt) ++n_pri;
}
ks_introsort(mem_ars_hash, n, a);
mem_mark_primary_se_core(opt, n, a, &z);
for (i = 0; i < n; ++i) {
mem_alnreg_t *p = &a[i];
p->secondary_all = i; // keep the rank in the first round
if (!p->is_alt && p->secondary >= 0 && a[p->secondary].is_alt)
p->alt_sc = a[p->secondary].score;
}
if (n_pri >= 0 && n_pri < n) {
kv_resize(int, z, n);
if (n_pri > 0) ks_introsort(mem_ars_hash2, n, a);
for (i = 0; i < n; ++i) z.a[a[i].secondary_all] = i;
for (i = 0; i < n; ++i) {
if (a[i].secondary >= 0) {
a[i].secondary_all = z.a[a[i].secondary];
if (a[i].is_alt) a[i].secondary = INT_MAX;
} else a[i].secondary_all = -1;
}
if (n_pri > 0) { // mark primary for hits to the primary assembly only
for (i = 0; i < n_pri; ++i) a[i].sub = 0, a[i].secondary = -1;
mem_mark_primary_se_core(opt, n_pri, a, &z);
}
} else {
for (i = 0; i < n; ++i)
a[i].secondary_all = a[i].secondary;
}
free(z.a);
return n_pri;
}
/*********************************
* Test if a seed is good enough *
*********************************/
#define MEM_SHORT_EXT 50
#define MEM_SHORT_LEN 200
#define MEM_HSP_COEF 1.1f
#define MEM_MINSC_COEF 5.5f
#define MEM_SEEDSW_COEF 0.05f
int mem_seed_sw(const mem_opt_t *opt, const bntseq_t *bns, const uint8_t *pac, int l_query, const uint8_t *query, const mem_seed_t *s)
{
int qb, qe, rid;
int64_t rb, re, mid, l_pac = bns->l_pac;
uint8_t *rseq = 0;
kswr_t x;
if (s->len >= MEM_SHORT_LEN) return -1; // the seed is longer than the max-extend; no need to do SW
qb = s->qbeg, qe = s->qbeg + s->len;
rb = s->rbeg, re = s->rbeg + s->len;
mid = (rb + re) >> 1;
qb -= MEM_SHORT_EXT; qb = qb > 0? qb : 0;
qe += MEM_SHORT_EXT; qe = qe < l_query? qe : l_query;
rb -= MEM_SHORT_EXT; rb = rb > 0? rb : 0;
re += MEM_SHORT_EXT; re = re < l_pac<<1? re : l_pac<<1;
if (rb < l_pac && l_pac < re) {
if (mid < l_pac) re = l_pac;
else rb = l_pac;
}
if (qe - qb >= MEM_SHORT_LEN || re - rb >= MEM_SHORT_LEN) return -1; // the seed seems good enough; no need to do SW
rseq = bns_fetch_seq(bns, pac, &rb, mid, &re, &rid);
x = ksw_align2(qe - qb, (uint8_t*)query + qb, re - rb, rseq, 5, opt->mat, opt->o_del, opt->e_del, opt->o_ins, opt->e_ins, KSW_XSTART, 0);
free(rseq);
return x.score;
}
void mem_flt_chained_seeds(const mem_opt_t *opt, const bntseq_t *bns, const uint8_t *pac, int l_query, const uint8_t *query, int n_chn, mem_chain_t *a)
{
double min_l = opt->min_chain_weight? MEM_HSP_COEF * opt->min_chain_weight : MEM_MINSC_COEF * log(l_query);
int i, j, k, min_HSP_score = (int)(opt->a * min_l + .499);
if (min_l > MEM_SEEDSW_COEF * l_query) return; // don't run the following for short reads
for (i = 0; i < n_chn; ++i) {
mem_chain_t *c = &a[i];
for (j = k = 0; j < c->n; ++j) {
mem_seed_t *s = &c->seeds[j];
s->score = mem_seed_sw(opt, bns, pac, l_query, query, s);
if (s->score < 0 || s->score >= min_HSP_score) {
s->score = s->score < 0? s->len * opt->a : s->score;
c->seeds[k++] = *s;
}
}
c->n = k;
}
}
/****************************************
* Construct the alignment from a chain *
****************************************/
static inline int cal_max_gap(const mem_opt_t *opt, int qlen)
{
int l_del = (int)((double)(qlen * opt->a - opt->o_del) / opt->e_del + 1.);
int l_ins = (int)((double)(qlen * opt->a - opt->o_ins) / opt->e_ins + 1.);
int l = l_del > l_ins? l_del : l_ins;
l = l > 1? l : 1;
return l < opt->w<<1? l : opt->w<<1;
}
#define MAX_BAND_TRY 2
void mem_chain2aln(const mem_opt_t *opt, const bntseq_t *bns, const uint8_t *pac, int l_query, const uint8_t *query, const mem_chain_t *c, mem_alnreg_v *av)
{
int i, k, rid, max_off[2], aw[2]; // aw: actual bandwidth used in extension
int64_t l_pac = bns->l_pac, rmax[2], tmp, max = 0;
const mem_seed_t *s;
uint8_t *rseq = 0;
uint64_t *srt;
if (c->n == 0) return;
// get the max possible span
rmax[0] = l_pac<<1; rmax[1] = 0;
for (i = 0; i < c->n; ++i) {
int64_t b, e;
const mem_seed_t *t = &c->seeds[i];
b = t->rbeg - (t->qbeg + cal_max_gap(opt, t->qbeg));
e = t->rbeg + t->len + ((l_query - t->qbeg - t->len) + cal_max_gap(opt, l_query - t->qbeg - t->len));
rmax[0] = rmax[0] < b? rmax[0] : b;
rmax[1] = rmax[1] > e? rmax[1] : e;
if (t->len > max) max = t->len;
}
rmax[0] = rmax[0] > 0? rmax[0] : 0;
rmax[1] = rmax[1] < l_pac<<1? rmax[1] : l_pac<<1;
if (rmax[0] < l_pac && l_pac < rmax[1]) { // crossing the forward-reverse boundary; then choose one side
if (c->seeds[0].rbeg < l_pac) rmax[1] = l_pac; // this works because all seeds are guaranteed to be on the same strand
else rmax[0] = l_pac;
}
// retrieve the reference sequence
rseq = bns_fetch_seq(bns, pac, &rmax[0], c->seeds[0].rbeg, &rmax[1], &rid);
assert(c->rid == rid);
srt = malloc(c->n * 8);
for (i = 0; i < c->n; ++i)
srt[i] = (uint64_t)c->seeds[i].score<<32 | i;
ks_introsort_64(c->n, srt);
for (k = c->n - 1; k >= 0; --k) {
mem_alnreg_t *a;
s = &c->seeds[(uint32_t)srt[k]];
for (i = 0; i < av->n; ++i) { // test whether extension has been made before
mem_alnreg_t *p = &av->a[i];
int64_t rd;
int qd, w, max_gap;
if (s->rbeg < p->rb || s->rbeg + s->len > p->re || s->qbeg < p->qb || s->qbeg + s->len > p->qe) continue; // not fully contained
if (s->len - p->seedlen0 > .1 * l_query) continue; // this seed may give a better alignment
// qd: distance ahead of the seed on query; rd: on reference
qd = s->qbeg - p->qb; rd = s->rbeg - p->rb;
max_gap = cal_max_gap(opt, qd < rd? qd : rd); // the maximal gap allowed in regions ahead of the seed
w = max_gap < p->w? max_gap : p->w; // bounded by the band width
if (qd - rd < w && rd - qd < w) break; // the seed is "around" a previous hit
// similar to the previous four lines, but this time we look at the region behind
qd = p->qe - (s->qbeg + s->len); rd = p->re - (s->rbeg + s->len);
max_gap = cal_max_gap(opt, qd < rd? qd : rd);
w = max_gap < p->w? max_gap : p->w;
if (qd - rd < w && rd - qd < w) break;
}
if (i < av->n) { // the seed is (almost) contained in an existing alignment; further testing is needed to confirm it is not leading to a different aln
if (bwa_verbose >= 4)
printf("** Seed(%d) [%ld;%ld,%ld] is almost contained in an existing alignment [%d,%d) <=> [%ld,%ld)\n",
k, (long)s->len, (long)s->qbeg, (long)s->rbeg, av->a[i].qb, av->a[i].qe, (long)av->a[i].rb, (long)av->a[i].re);
for (i = k + 1; i < c->n; ++i) { // check overlapping seeds in the same chain
const mem_seed_t *t;
if (srt[i] == 0) continue;
t = &c->seeds[(uint32_t)srt[i]];
if (t->len < s->len * .95) continue; // only check overlapping if t is long enough; TODO: more efficient by early stopping
if (s->qbeg <= t->qbeg && s->qbeg + s->len - t->qbeg >= s->len>>2 && t->qbeg - s->qbeg != t->rbeg - s->rbeg) break;
if (t->qbeg <= s->qbeg && t->qbeg + t->len - s->qbeg >= s->len>>2 && s->qbeg - t->qbeg != s->rbeg - t->rbeg) break;
}
if (i == c->n) { // no overlapping seeds; then skip extension
srt[k] = 0; // mark that seed extension has not been performed
continue;
}
if (bwa_verbose >= 4)
printf("** Seed(%d) might lead to a different alignment even though it is contained. Extension will be performed.\n", k);
}
a = kv_pushp(mem_alnreg_t, *av);
memset(a, 0, sizeof(mem_alnreg_t));
a->w = aw[0] = aw[1] = opt->w;
a->score = a->truesc = -1;
a->rid = c->rid;
if (bwa_verbose >= 4) err_printf("** ---> Extending from seed(%d) [%ld;%ld,%ld] @ %s <---\n", k, (long)s->len, (long)s->qbeg, (long)s->rbeg, bns->anns[c->rid].name);
if (s->qbeg) { // left extension
uint8_t *rs, *qs;
int qle, tle, gtle, gscore;
qs = malloc(s->qbeg);
for (i = 0; i < s->qbeg; ++i) qs[i] = query[s->qbeg - 1 - i];
tmp = s->rbeg - rmax[0];
rs = malloc(tmp);
for (i = 0; i < tmp; ++i) rs[i] = rseq[tmp - 1 - i];
for (i = 0; i < MAX_BAND_TRY; ++i) {
int prev = a->score;
aw[0] = opt->w << i;
if (bwa_verbose >= 4) {
int j;
printf("*** Left ref: "); for (j = 0; j < tmp; ++j) putchar("ACGTN"[(int)rs[j]]); putchar('\n');
printf("*** Left query: "); for (j = 0; j < s->qbeg; ++j) putchar("ACGTN"[(int)qs[j]]); putchar('\n');
}
a->score = ksw_extend2(s->qbeg, qs, tmp, rs, 5, opt->mat, opt->o_del, opt->e_del, opt->o_ins, opt->e_ins, aw[0], opt->pen_clip5, opt->zdrop, s->len * opt->a, &qle, &tle, >le, &gscore, &max_off[0]);
if (bwa_verbose >= 4) { printf("*** Left extension: prev_score=%d; score=%d; bandwidth=%d; max_off_diagonal_dist=%d\n", prev, a->score, aw[0], max_off[0]); fflush(stdout); }
if (a->score == prev || max_off[0] < (aw[0]>>1) + (aw[0]>>2)) break;
}
// check whether we prefer to reach the end of the query
if (gscore <= 0 || gscore <= a->score - opt->pen_clip5) { // local extension
a->qb = s->qbeg - qle, a->rb = s->rbeg - tle;
a->truesc = a->score;
} else { // to-end extension
a->qb = 0, a->rb = s->rbeg - gtle;
a->truesc = gscore;
}
free(qs); free(rs);
} else a->score = a->truesc = s->len * opt->a, a->qb = 0, a->rb = s->rbeg;
if (s->qbeg + s->len != l_query) { // right extension
int qle, tle, qe, re, gtle, gscore, sc0 = a->score;
qe = s->qbeg + s->len;
re = s->rbeg + s->len - rmax[0];
assert(re >= 0);
for (i = 0; i < MAX_BAND_TRY; ++i) {
int prev = a->score;
aw[1] = opt->w << i;
if (bwa_verbose >= 4) {
int j;
printf("*** Right ref: "); for (j = 0; j < rmax[1] - rmax[0] - re; ++j) putchar("ACGTN"[(int)rseq[re+j]]); putchar('\n');
printf("*** Right query: "); for (j = 0; j < l_query - qe; ++j) putchar("ACGTN"[(int)query[qe+j]]); putchar('\n');
}
a->score = ksw_extend2(l_query - qe, query + qe, rmax[1] - rmax[0] - re, rseq + re, 5, opt->mat, opt->o_del, opt->e_del, opt->o_ins, opt->e_ins, aw[1], opt->pen_clip3, opt->zdrop, sc0, &qle, &tle, >le, &gscore, &max_off[1]);
if (bwa_verbose >= 4) { printf("*** Right extension: prev_score=%d; score=%d; bandwidth=%d; max_off_diagonal_dist=%d\n", prev, a->score, aw[1], max_off[1]); fflush(stdout); }
if (a->score == prev || max_off[1] < (aw[1]>>1) + (aw[1]>>2)) break;
}
// similar to the above
if (gscore <= 0 || gscore <= a->score - opt->pen_clip3) { // local extension
a->qe = qe + qle, a->re = rmax[0] + re + tle;
a->truesc += a->score - sc0;
} else { // to-end extension
a->qe = l_query, a->re = rmax[0] + re + gtle;
a->truesc += gscore - sc0;
}
} else a->qe = l_query, a->re = s->rbeg + s->len;
if (bwa_verbose >= 4) printf("*** Added alignment region: [%d,%d) <=> [%ld,%ld); score=%d; {left,right}_bandwidth={%d,%d}\n", a->qb, a->qe, (long)a->rb, (long)a->re, a->score, aw[0], aw[1]);
// compute seedcov
for (i = 0, a->seedcov = 0; i < c->n; ++i) {
const mem_seed_t *t = &c->seeds[i];
if (t->qbeg >= a->qb && t->qbeg + t->len <= a->qe && t->rbeg >= a->rb && t->rbeg + t->len <= a->re) // seed fully contained
a->seedcov += t->len; // this is not very accurate, but for approx. mapQ, this is good enough
}
a->w = aw[0] > aw[1]? aw[0] : aw[1];
a->seedlen0 = s->len;
a->frac_rep = c->frac_rep;
}
free(srt); free(rseq);
}
/*****************************
* Basic hit->SAM conversion *
*****************************/
static inline int infer_bw(int l1, int l2, int score, int a, int q, int r)
{
int w;
if (l1 == l2 && l1 * a - score < (q + r - a)<<1) return 0; // to get equal alignment length, we need at least two gaps
w = ((double)((l1 < l2? l1 : l2) * a - score - q) / r + 2.);
if (w < abs(l1 - l2)) w = abs(l1 - l2);
return w;
}
static inline int get_rlen(int n_cigar, const uint32_t *cigar)
{
int k, l;
for (k = l = 0; k < n_cigar; ++k) {
int op = cigar[k]&0xf;
if (op == 0 || op == 2)
l += cigar[k]>>4;
}
return l;
}
static inline void add_cigar(const mem_opt_t *opt, mem_aln_t *p, kstring_t *str, int which)
{
int i;
if (p->n_cigar) { // aligned
for (i = 0; i < p->n_cigar; ++i) {
int c = p->cigar[i]&0xf;
if (!(opt->flag&MEM_F_SOFTCLIP) && !p->is_alt && (c == 3 || c == 4))
c = which? 4 : 3; // use hard clipping for supplementary alignments
kputw(p->cigar[i]>>4, str); kputc("MIDSH"[c], str);
}
} else kputc('*', str); // having a coordinate but unaligned (e.g. when copy_mate is true)
}
void mem_aln2sam(const mem_opt_t *opt, const bntseq_t *bns, kstring_t *str, bseq1_t *s, int n, const mem_aln_t *list, int which, const mem_aln_t *m_)
{
int i, l_name;
mem_aln_t ptmp = list[which], *p = &ptmp, mtmp, *m = 0; // make a copy of the alignment to convert
if (m_) mtmp = *m_, m = &mtmp;
// set flag
p->flag |= m? 0x1 : 0; // is paired in sequencing
p->flag |= p->rid < 0? 0x4 : 0; // is mapped
p->flag |= m && m->rid < 0? 0x8 : 0; // is mate mapped
if (p->rid < 0 && m && m->rid >= 0) // copy mate to alignment
p->rid = m->rid, p->pos = m->pos, p->is_rev = m->is_rev, p->n_cigar = 0;
if (m && m->rid < 0 && p->rid >= 0) // copy alignment to mate
m->rid = p->rid, m->pos = p->pos, m->is_rev = p->is_rev, m->n_cigar = 0;
p->flag |= p->is_rev? 0x10 : 0; // is on the reverse strand
p->flag |= m && m->is_rev? 0x20 : 0; // is mate on the reverse strand
// print up to CIGAR
l_name = strlen(s->name);
ks_resize(str, str->l + s->l_seq + l_name + (s->qual? s->l_seq : 0) + 20);
kputsn(s->name, l_name, str); kputc('\t', str); // QNAME
kputw((p->flag&0xffff) | (p->flag&0x10000? 0x100 : 0), str); kputc('\t', str); // FLAG
if (p->rid >= 0) { // with coordinate
kputs(bns->anns[p->rid].name, str); kputc('\t', str); // RNAME
kputl(p->pos + 1, str); kputc('\t', str); // POS
kputw(p->mapq, str); kputc('\t', str); // MAPQ
add_cigar(opt, p, str, which);
} else kputsn("*\t0\t0\t*", 7, str); // without coordinte
kputc('\t', str);
// print the mate position if applicable
if (m && m->rid >= 0) {
if (p->rid == m->rid) kputc('=', str);
else kputs(bns->anns[m->rid].name, str);
kputc('\t', str);
kputl(m->pos + 1, str); kputc('\t', str);
if (p->rid == m->rid) {
int64_t p0 = p->pos + (p->is_rev? get_rlen(p->n_cigar, p->cigar) - 1 : 0);
int64_t p1 = m->pos + (m->is_rev? get_rlen(m->n_cigar, m->cigar) - 1 : 0);
if (m->n_cigar == 0 || p->n_cigar == 0) kputc('0', str);
else kputl(-(p0 - p1 + (p0 > p1? 1 : p0 < p1? -1 : 0)), str);
} else kputc('0', str);
} else kputsn("*\t0\t0", 5, str);
kputc('\t', str);
// print SEQ and QUAL
if (p->flag & 0x100) { // for secondary alignments, don't write SEQ and QUAL
kputsn("*\t*", 3, str);
} else if (!p->is_rev) { // the forward strand
int i, qb = 0, qe = s->l_seq;
if (p->n_cigar && which && !(opt->flag&MEM_F_SOFTCLIP) && !p->is_alt) { // have cigar && not the primary alignment && not softclip all
if ((p->cigar[0]&0xf) == 4 || (p->cigar[0]&0xf) == 3) qb += p->cigar[0]>>4;
if ((p->cigar[p->n_cigar-1]&0xf) == 4 || (p->cigar[p->n_cigar-1]&0xf) == 3) qe -= p->cigar[p->n_cigar-1]>>4;
}
ks_resize(str, str->l + (qe - qb) + 1);
for (i = qb; i < qe; ++i) str->s[str->l++] = "ACGTN"[(int)s->seq[i]];
kputc('\t', str);
if (s->qual) { // printf qual
ks_resize(str, str->l + (qe - qb) + 1);
for (i = qb; i < qe; ++i) str->s[str->l++] = s->qual[i];
str->s[str->l] = 0;
} else kputc('*', str);
} else { // the reverse strand
int i, qb = 0, qe = s->l_seq;
if (p->n_cigar && which && !(opt->flag&MEM_F_SOFTCLIP) && !p->is_alt) {
if ((p->cigar[0]&0xf) == 4 || (p->cigar[0]&0xf) == 3) qe -= p->cigar[0]>>4;
if ((p->cigar[p->n_cigar-1]&0xf) == 4 || (p->cigar[p->n_cigar-1]&0xf) == 3) qb += p->cigar[p->n_cigar-1]>>4;
}
ks_resize(str, str->l + (qe - qb) + 1);
for (i = qe-1; i >= qb; --i) str->s[str->l++] = "TGCAN"[(int)s->seq[i]];
kputc('\t', str);
if (s->qual) { // printf qual
ks_resize(str, str->l + (qe - qb) + 1);
for (i = qe-1; i >= qb; --i) str->s[str->l++] = s->qual[i];
str->s[str->l] = 0;
} else kputc('*', str);
}
// print optional tags
if (p->n_cigar) {
kputsn("\tNM:i:", 6, str); kputw(p->NM, str);
kputsn("\tMD:Z:", 6, str); kputs((char*)(p->cigar + p->n_cigar), str);
}
if (m && m->n_cigar) { kputsn("\tMC:Z:", 6, str); add_cigar(opt, m, str, which); }
if (p->score >= 0) { kputsn("\tAS:i:", 6, str); kputw(p->score, str); }
if (p->sub >= 0) { kputsn("\tXS:i:", 6, str); kputw(p->sub, str); }
if (bwa_rg_id[0]) { kputsn("\tRG:Z:", 6, str); kputs(bwa_rg_id, str); }
if (!(p->flag & 0x100)) { // not multi-hit
for (i = 0; i < n; ++i)
if (i != which && !(list[i].flag&0x100)) break;
if (i < n) { // there are other primary hits; output them
kputsn("\tSA:Z:", 6, str);
for (i = 0; i < n; ++i) {
const mem_aln_t *r = &list[i];
int k;
if (i == which || (r->flag&0x100)) continue; // proceed if: 1) different from the current; 2) not shadowed multi hit
kputs(bns->anns[r->rid].name, str); kputc(',', str);
kputl(r->pos+1, str); kputc(',', str);
kputc("+-"[r->is_rev], str); kputc(',', str);
for (k = 0; k < r->n_cigar; ++k) {
kputw(r->cigar[k]>>4, str); kputc("MIDSH"[r->cigar[k]&0xf], str);
}
kputc(',', str); kputw(r->mapq, str);
kputc(',', str); kputw(r->NM, str);
kputc(';', str);
}
}
if (p->alt_sc > 0)
ksprintf(str, "\tpa:f:%.3f", (double)p->score / p->alt_sc);
}
if (p->XA) {
kputsn((opt->flag&MEM_F_XB)? "\tXB:Z:" : "\tXA:Z:", 6, str);
kputs(p->XA, str);
}
if (s->comment) { kputc('\t', str); kputs(s->comment, str); }
if ((opt->flag&MEM_F_REF_HDR) && p->rid >= 0 && bns->anns[p->rid].anno != 0 && bns->anns[p->rid].anno[0] != 0) {
int tmp;
kputsn("\tXR:Z:", 6, str);
tmp = str->l;
kputs(bns->anns[p->rid].anno, str);
for (i = tmp; i < str->l; ++i) // replace TAB in the comment to SPACE
if (str->s[i] == '\t') str->s[i] = ' ';
}
kputc('\n', str);
}
/************************
* Integrated interface *
************************/
int mem_approx_mapq_se(const mem_opt_t *opt, const mem_alnreg_t *a)
{
int mapq, l, sub = a->sub? a->sub : opt->min_seed_len * opt->a;
double identity;
sub = a->csub > sub? a->csub : sub;
if (sub >= a->score) return 0;
l = a->qe - a->qb > a->re - a->rb? a->qe - a->qb : a->re - a->rb;
identity = 1. - (double)(l * opt->a - a->score) / (opt->a + opt->b) / l;
if (a->score == 0) {
mapq = 0;
} else if (opt->mapQ_coef_len > 0) {
double tmp;
tmp = l < opt->mapQ_coef_len? 1. : opt->mapQ_coef_fac / log(l);
tmp *= identity * identity;
mapq = (int)(6.02 * (a->score - sub) / opt->a * tmp * tmp + .499);
} else {
mapq = (int)(MEM_MAPQ_COEF * (1. - (double)sub / a->score) * log(a->seedcov) + .499);
mapq = identity < 0.95? (int)(mapq * identity * identity + .499) : mapq;
}
if (a->sub_n > 0) mapq -= (int)(4.343 * log(a->sub_n+1) + .499);