-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathtst19_oil.cpp
211 lines (204 loc) · 5.23 KB
/
tst19_oil.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#include <bits/stdc++.h>
#include <vector>
#include "oil.h"
using namespace std;
using lint = long long;
using pi = array<lint, 2>;
#define sz(v) ((int)(v).size())
#define all(v) (v).begin(), (v).end()
#define cr(v, n) (v).clear(), (v).resize(n);
const int MAXT = 1050000;
const int mod = 998244353; // 1e9 + 7;//993244853;
// I don't remember the credit of modint, but it's not mine.
// I don't remember the credit of FFT, but it's probably mine.
// Polynomial library is due to adamant:
// https://github.com/cp-algorithms/cp-algorithms-aux/blob/master/src/polynomial.cpp
// To use polynomial sqrt, need to amend sqrt for modint.
struct mint {
int val;
mint() { val = 0; }
mint(const lint &v) {
val = (-mod <= v && v < mod) ? v : v % mod;
if (val < 0)
val += mod;
}
friend ostream &operator<<(ostream &os, const mint &a) { return os << a.val; }
friend bool operator==(const mint &a, const mint &b) { return a.val == b.val; }
friend bool operator!=(const mint &a, const mint &b) { return !(a == b); }
friend bool operator<(const mint &a, const mint &b) { return a.val < b.val; }
mint operator-() const { return mint(-val); }
mint &operator+=(const mint &m) {
if ((val += m.val) >= mod)
val -= mod;
return *this;
}
mint &operator-=(const mint &m) {
if ((val -= m.val) < 0)
val += mod;
return *this;
}
mint &operator*=(const mint &m) {
val = (lint)val * m.val % mod;
return *this;
}
friend mint ipow(mint a, lint p) {
mint ans = 1;
for (; p; p /= 2, a *= a)
if (p & 1)
ans *= a;
return ans;
}
mint inv() const { return ipow(*this, mod - 2); }
mint &operator/=(const mint &m) { return (*this) *= m.inv(); }
friend mint operator+(mint a, const mint &b) { return a += b; }
friend mint operator-(mint a, const mint &b) { return a -= b; }
friend mint operator*(mint a, const mint &b) { return a *= b; }
friend mint operator/(mint a, const mint &b) { return a /= b; }
operator int64_t() const { return val; }
};
struct seg {
int tree[MAXT], lazy[MAXT];
void lazydown(int p) {
for (int i = 2 * p; i < 2 * p + 2; i++) {
tree[i] += lazy[p];
lazy[i] += lazy[p];
}
lazy[p] = 0;
}
void add(int s, int e, int ps, int pe, int p, int v) {
if (e < ps || pe < s)
return;
if (s <= ps && pe <= e) {
tree[p] += v;
lazy[p] += v;
return;
}
lazydown(p);
int pm = (ps + pe) / 2;
add(s, e, ps, pm, 2 * p, v);
add(s, e, pm + 1, pe, 2 * p + 1, v);
tree[p] = min(tree[2 * p], tree[2 * p + 1]);
}
lint dfs(int s, int e, int p, int n) {
if (tree[p] > 0)
return 0;
if (s == e)
return 1ll * s * (n - s);
if (2 * e <= n) {
while (s != e) {
lazydown(p);
int m = (s + e) / 2;
if (tree[2 * p + 1] == 0)
s = m + 1, p = 2 * p + 1;
else
e = m, p = 2 * p;
}
return 1ll * s * (n - s);
}
if (2 * s >= n) {
while (s != e) {
lazydown(p);
int m = (s + e) / 2;
if (tree[2 * p] > 0)
s = m + 1, p = 2 * p + 1;
else
e = m, p = 2 * p;
}
return 1ll * s * (n - s);
}
lazydown(p);
int m = (s + e) / 2;
return max(dfs(s, m, 2 * p, n), dfs(m + 1, e, 2 * p + 1, n));
}
} seg;
long long findEdges(int N, std::vector<int> A, std::vector<int> B) {
int n = N;
vector<pi> edges;
for (int i = 0; i < sz(A); i++) {
int u = A[i], v = B[i];
if (u > v)
swap(u, v);
edges.push_back({u - 1, v - 1});
}
int m = sz(edges);
lint ans = 0;
// case 1: remove one M
{
for (int i = 0; i < m; i++) {
seg.add(edges[i][0] + 1, edges[i][1], 1, n - 1, 1, +1);
}
for (int i = 0; i < m; i++) {
seg.add(edges[i][0] + 1, edges[i][1], 1, n - 1, 1, -1);
ans = max(ans, seg.dfs(1, n - 1, 1, n));
seg.add(edges[i][0] + 1, edges[i][1], 1, n - 1, 1, +1);
}
}
// case 4: divide it into subsegment
{
priority_queue<int, vector<int>, greater<int>> pqmin;
priority_queue<int> pqmax;
vector<vector<int>> g1(n), g2(n);
vector<int> L(n), R(n);
for (auto &[u, v] : edges) {
g1[u].push_back(v);
g2[v].push_back(u);
}
for (int i = 1; i < n; i++) {
for (auto &j : g1[i - 1])
pqmin.push(j);
while (sz(pqmin) && pqmin.top() < i)
pqmin.pop();
L[i] = (sz(pqmin) ? pqmin.top() : (n - 1));
}
for (int i = n - 1; i > 0; i--) {
for (auto &j : g2[i])
pqmax.push(j);
while (sz(pqmax) && pqmax.top() >= i)
pqmax.pop();
R[i] = (sz(pqmax) ? pqmax.top() : -1);
}
set<int> s;
vector<pi> vect;
for (int i = 1; i <= n - 1; i++) {
vect.push_back({R[i], i});
}
sort(all(vect));
int p = 0;
for (int i = 1; i <= n - 1; i++) {
while (p < sz(vect) && vect[p][0] < i)
s.insert(vect[p++][1]);
// [i + 1, L[i]]
auto j = s.lower_bound(L[i] + 1);
if (j == s.begin())
continue;
j--;
if (*j > i)
ans = max(ans, 1ll * (*j - i) * (n - *j + i));
if ((*j - i) * 2 >= n) {
auto j = s.lower_bound(i + n / 2);
ans = max(ans, 1ll * (*j - i) * (n - *j + i));
if (j != s.begin()) {
j--;
if (*j > i)
ans = max(ans, 1ll * (*j - i) * (n - *j + i));
}
}
}
}
// remove zeros
{
vector<int> dx(n);
for (auto &[u, v] : edges)
dx[u]++, dx[v]--;
for (int i = 1; i < n; i++)
dx[i] += dx[i - 1];
lint le = 0;
for (int i = 0; i < n - 1; i++) {
if (dx[i] == 0) {
ans = max(ans, 1ll * (i + 1) * (n - i - 1) + le);
le = max(le, 1ll * (i + 1) * (n - i - 1));
}
}
}
return 2 * ans;
}