-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_contrast.py
266 lines (224 loc) · 16.2 KB
/
train_contrast.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import torch
import os
import random
import traceback
from torch.utils.tensorboard import SummaryWriter
from monai.data import DataLoader, CacheDataset, Dataset
from monai.losses import DiceLoss, DiceCELoss
from monai.metrics import DiceMetric
from monai.data.utils import decollate_batch
from monai.inferers import sliding_window_inference
from monai.networks.nets import UNet
from monai.visualize import plot_2d_or_3d_image
from monai.transforms import (ToTensord, Compose, LoadImaged, ToTensord, Transposed, EnsureType, Compose, AsDiscrete,
RandSpatialCropSamplesd, RandFlipd, RandShiftIntensityd, RandGaussianNoised, ThresholdIntensityd, SpatialPadd)
from utils import *
from pathlib import Path
def save_checkpoint(model_state_dict,
optimizer_seg_state_dict,
save_path=None):
"""Save checkpoint while training the model
Args:
model_state_dict (dict): Dictionary containing model state i.e. weights and biases
Required: True
optimizer_state_dict (dict): Dictionary containing optimizer state for the segmentation part i.e. gradients
Required: True
save_path (str): Path to save the checkpoint
Required: False Default: None
Returns:
-
"""
torch.save({'model_state_dict': model_state_dict,
'optimizer_seg_state_dict': optimizer_seg_state_dict,
}, save_path)
def key_error_raiser(ex): raise Exception(ex)
def train_contrast(config, log_path, logger):
cases = [f for f in Path(config['data_dir']).glob('*')]
image_files = sorted([os.path.join(k, f) for k in cases for f in k.glob('*') if f.is_dir()])
right_seg_files = sorted([os.path.join(k, f) for k in cases for f in k.glob('*') if 'right' in str(f)])
left_seg_files = sorted([os.path.join(k, f) for k in cases for f in k.glob('*') if 'left' in str(f)])
train_transforms_config = config['train_transforms']
eval_transforms_config = config['eval_transforms']
train_transforms = Compose([
LoadImaged(keys=train_transforms_config['LoadImaged_im']['keys'],
ensure_channel_first=train_transforms_config['LoadImaged_im']['ensure_channel_first']),
LoadImaged(keys=train_transforms_config['LoadImaged_seg']['keys'],
ensure_channel_first=train_transforms_config['LoadImaged_seg']['ensure_channel_first']),
Transposed(keys=train_transforms_config['Transposed']['keys'],
indices=train_transforms_config['Transposed']['indices']),
WindowindContrastCTd(keys=train_transforms_config['WindowindContrastCTd']['keys']),
ConvertToMultiChannelMaskd(keys=train_transforms_config['ConvertToMultiChannelMaskd']['keys']),
SpatialPadd(keys=train_transforms_config['SpatialPadd']['keys'],
spatial_size=train_transforms_config['SpatialPadd']['spatial_size']),
RandSpatialCropSamplesd(keys=train_transforms_config['RandSpatialCropSamplesd']['keys'],
roi_size=train_transforms_config['RandSpatialCropSamplesd']['roi_size'],
num_samples=train_transforms_config['RandSpatialCropSamplesd']['num_samples'],
random_size=train_transforms_config['RandSpatialCropSamplesd']['random_size']),
RandFlipd(keys=train_transforms_config['RandFlipd_x']['keys'],
prob=train_transforms_config['RandFlipd_x']['prob'],
spatial_axis=train_transforms_config['RandFlipd_x']['spatial_axis']),
RandFlipd(keys=train_transforms_config['RandFlipd_y']['keys'],
prob=train_transforms_config['RandFlipd_y']['prob'],
spatial_axis=train_transforms_config['RandFlipd_y']['spatial_axis']),
RandFlipd(keys=train_transforms_config['RandFlipd_z']['keys'],
prob=train_transforms_config['RandFlipd_z']['prob'],
spatial_axis=train_transforms_config['RandFlipd_z']['spatial_axis']),
RandShiftIntensityd(keys=train_transforms_config['RandShiftIntensityd']['keys'],
offsets=train_transforms_config['RandShiftIntensityd']['offsets'],
prob=train_transforms_config['RandShiftIntensityd']['prob']),
RandGaussianNoised(keys=train_transforms_config['RandGaussianNoised']['keys'],
prob=train_transforms_config['RandGaussianNoised']['prob'],
mean=train_transforms_config['RandGaussianNoised']['mean'],
std=train_transforms_config['RandGaussianNoised']['std']),
ThresholdIntensityd(keys=train_transforms_config['ThresholdIntensityd_clip_upper']['keys'],
threshold=train_transforms_config['ThresholdIntensityd_clip_upper']['threshold'],
above=train_transforms_config['ThresholdIntensityd_clip_upper']['above'],
cval=train_transforms_config['ThresholdIntensityd_clip_upper']['cval']),
ThresholdIntensityd(keys=train_transforms_config['ThresholdIntensityd_clip_lower']['keys'],
threshold=train_transforms_config['ThresholdIntensityd_clip_lower']['threshold'],
above=train_transforms_config['ThresholdIntensityd_clip_lower']['above'],
cval=train_transforms_config['ThresholdIntensityd_clip_lower']['cval']),
ToTensord(keys=train_transforms_config['ToTensord']['keys'])
])
val_transforms = Compose([
LoadImaged(keys=eval_transforms_config['LoadImaged_im']['keys'],
ensure_channel_first=eval_transforms_config['LoadImaged_im']['ensure_channel_first']),
LoadImaged(keys=eval_transforms_config['LoadImaged_seg']['keys'],
ensure_channel_first=eval_transforms_config['LoadImaged_seg']['ensure_channel_first']),
Transposed(keys=eval_transforms_config['Transposed']['keys'],
indices=eval_transforms_config['Transposed']['indices']),
WindowindContrastCTd(keys=eval_transforms_config['WindowindContrastCTd']['keys']),
ConvertToMultiChannelMaskd(keys=eval_transforms_config['ConvertToMultiChannelMaskd']['keys']),
SpatialPadd(keys=eval_transforms_config['SpatialPadd']['keys'],
spatial_size=eval_transforms_config['SpatialPadd']['spatial_size']),
ToTensord(keys=eval_transforms_config['ToTensord']['keys'])
])
datadict = [{"image": im, "right_seg": right_seg, "left_seg": left_seg}
for im, right_seg, left_seg in zip(image_files, right_seg_files, left_seg_files)]
cross_val_split = config['cross_val_split'] if 'cross_val_split' in config.keys() else key_error_raiser("Cross validation split not defined in config.")
random.shuffle(datadict)
train_dict = datadict[:int(len(datadict) * cross_val_split)]
val_dict = datadict[int(len(datadict) * cross_val_split):]
logger.info('Dataset length {} '. format(len(datadict)))
logger.info('Train/Val split {} , {}'. format(train_dict, val_dict))
# define dataset
if config['dataset'] == 'CacheDataset':
train_dataset = CacheDataset(data=train_dict, transform=train_transforms)
val_dataset = CacheDataset(data=val_dict, transform=val_transforms)
elif config['dataset'] == 'Dataset':
train_dataset = Dataset(data=train_dict, transform=train_transforms)
val_dataset = Dataset(data=val_dict, transform=val_transforms)
else:
raise Exception("No dataset type has been defined in the config file")
train_size = len(train_dataset)
val_size = len(val_dataset)
# initialize DataLoader
train_loader = DataLoader(train_dataset, batch_size=config['dataloader']['batch_size'] ,
shuffle=config['dataloader']['shuffle'],
num_workers=config['dataloader']['num_workers'])
val_loader = DataLoader(val_dataset, batch_size=1,
shuffle=config['dataloader']['shuffle'],
num_workers=config['dataloader']['num_workers'])
# initialize model
if config['model']['name'] == 'UNet':
model = UNet(spatial_dims=config['model']['spatial_dims'], in_channels=config['model']['in_channels'], out_channels=config['model']['out_channels'],
kernel_size=config['model']['kernel_size'], up_kernel_size=config['model']['up_kernel_size'], channels=config['model']['channels'],
strides=config['model']['strides'], norm=config['model']['norm'], dropout=config['model']['dropout'],
num_res_units=config['model']['num_res_units'])
else:
raise Exception("No model has been defined in the config file")
if torch.cuda.device_count() > 1: model = torch.nn.DataParallel(model) # use multiple GPUs
model.to(device=torch.device(config['device']))
# initialize optimizer
if 'optimizer' in config.keys():
if config['optimizer']['name'] == 'Adam':
optimizer = torch.optim.Adam(model.parameters(), lr=config['optimizer']['learning_rate'], betas=config['optimizer']['betas'],
weight_decay=config['optimizer']['weight_decay'])
else:
raise Exception("No optimizer has been defined in the config file")
logger.info('Training with optimizer {} '.format(optimizer))
# initialize loss
if 'loss' in config.keys():
if config['loss']['name'] == 'DiceLoss':
loss = DiceLoss(softmax=config['loss']['softmax'], include_background=config['loss']['include_background'])
elif config['loss']['name'] == 'DiceCELoss':
loss = DiceCELoss(softmax=config['loss']['softmax'], include_background=config['loss']['include_background'])
else:
raise Exception("No loss has been defined in the config file.")
logger.info('Loss function to minimize {}.'.format(loss))
post_pred_transforms = config['post_pred_transforms'] if 'post_pred_transforms' in config.keys() else key_error_raiser("Post-prediction transforms not defined config.")
post_pred = Compose([EnsureType(), AsDiscrete(argmax=post_pred_transforms['AsDiscrete']['argmax'],
to_onehot=post_pred_transforms['AsDiscrete']['to_onehot'])])
post_label = Compose([EnsureType()])
if 'metric' in config.keys():
if config['metric']['name'] == 'DiceMetric':
train_metric = DiceMetric(include_background=config['metric']['include_background'], reduction=config['metric']['reduction'])
val_metric = DiceMetric(include_background=config['metric']['include_background'], reduction=config['metric']['reduction'])
else:
raise Exception("No metric has been defined in the config file")
logger.info('Metric {}'.format(train_metric))
num_epochs = config['epochs'] if 'epochs' in config.keys() else key_error_raiser("Number of epochs missing from config.")
val_interval = config['val_interval'] if 'val_interval' in config.keys() else key_error_raiser("Validation interval not defined in config.")
log_file = config['logs'] if 'logs' in config.keys() else key_error_raiser("Log file not defined in config.")
device = config['device'] if 'device' in config.keys() else key_error_raiser("Device not defined in config.")
writer = SummaryWriter()
losses = []
val_losses = []
validation_metrics = []
for epoch in range(config['epochs']):
model.train()
for batch, train_data in enumerate(train_loader, 1):
image, segmentation = train_data['image'].float().to(device=torch.device(config['device'])), train_data['segmentation'].float().to(device=torch.device(config['device']))
try:
optimizer.zero_grad()
out = model(image)
loss_s = loss(out, segmentation)
loss_s.backward()
_outputs = [post_pred(i) for i in decollate_batch(out)]
_labels = [post_label(i) for i in decollate_batch(segmentation)]
optimizer.step()
train_metric(y_pred=_outputs, y=_labels)
except Exception as e:
print('Caught the following exception {}'.format(traceback.format_exc()))
losses.append(loss_s.item())
metric = train_metric.aggregate().item()
if metric > 0.5 and (epoch % 100) == 0:
plot_2d_or_3d_image(data=image, step=0, writer=writer, frame_dim=-1, tag=f'image at epoch: {epoch}')
plot_2d_or_3d_image(data=segmentation, step=0, writer=writer, frame_dim=-1, tag=f'label at epoch: {epoch}')
plot_2d_or_3d_image(data=out, step=0, writer=writer, frame_dim=-1, tag=f'model output at epoch: {epoch}')
writer.add_scalar(tag='Loss/train', scalar_value=losses[-1], global_step=epoch)
logger.info(f'Epoch {epoch} of {config["epochs"]} with Train loss {losses[-1]}')
logger.info(f'Epoch {epoch} of {config["epochs"]} with Train metric {metric}')
logger.info(f'-------------- Finished epoch {epoch} -------------')
train_metric.reset()
if epoch % config['val_interval'] == 0:
with torch.no_grad():
# evaluate model
model.eval()
for _, val_data in enumerate(val_loader, 1):
val_image, val_segm = val_data['image'].float().to(device=torch.device(config['device'])), val_data['segmentation'].float().to(device=torch.device(config['device']))
try:
val_out = sliding_window_inference(inputs=val_image, roi_size=(96, 96, 96), sw_batch_size=24, predictor=model)
loss_s = loss(val_out, val_segm)
val_outputs = [post_pred(i) for i in decollate_batch(val_out)]
val_labels = [post_label(i) for i in decollate_batch(val_segm)]
val_metric(val_outputs, val_labels)
except Exception as e:
print(f'Exception caught while validating in {traceback.format_exc()}. Aborting...')
# record loss
val_losses.append(loss_s.item())
metric = val_metric.aggregate().item()
validation_metrics.append(metric)
writer.add_scalar(tag='Loss/eval', scalar_value=val_losses[-1], global_step=epoch)
logger.info(f'Eval loss {val_losses[-1]}')
logger.info(f'Eval metric {metric}')
val_metric.reset()
# save models
if validation_metrics[-1] > 0.90:
if not os.path.exists(log_path.joinpath(config['logs']).joinpath('models')):
os.makedirs(log_path.joinpath(config['logs']).joinpath('models'))
logger.info(f'Saving model at epoch {epoch}')
save_checkpoint(model_state_dict=model.state_dict(), optimizer_seg_state_dict=optimizer.state_dict(),
save_path=log_path.joinpath(config['logs']).joinpath('models/model{}.tar'.format(epoch)))
logger.info(f'-------------- Finished epoch {epoch} -------------')
return model