forked from MRtrix3/mrtrix3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mrmath.cpp
446 lines (366 loc) · 12.8 KB
/
mrmath.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
/* Copyright (c) 2008-2017 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, you can obtain one at http://mozilla.org/MPL/2.0/.
*
* MRtrix is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* For more details, see http://www.mrtrix.org/.
*/
#include "command.h"
#include "progressbar.h"
#include "memory.h"
#include "image.h"
#include "algo/threaded_loop.h"
#include "math/math.h"
#include "math/median.h"
#include <limits>
#include <vector>
using namespace MR;
using namespace App;
const char* operations[] = {
"mean",
"median",
"sum",
"product",
"rms",
"norm",
"var",
"std",
"min",
"max",
"absmax", // Maximum of absolute values
"magmax", // Value for which the magnitude is the maximum (i.e. preserves signed-ness)
NULL
};
void usage ()
{
AUTHOR = "J-Donald Tournier ([email protected])";
SYNOPSIS = "Compute summary statistic on image intensities either across images, "
"or along a specified axis of a single image";
DESCRIPTION
+ "Supported operations are:"
+ "mean, median, sum, product, rms (root-mean-square value), norm (vector 2-norm), var (unbiased variance), "
"std (unbiased standard deviation), min, max, absmax (maximum absolute value), "
"magmax (value with maximum absolute value, preserving its sign)."
+ "See also 'mrcalc' to compute per-voxel operations.";
ARGUMENTS
+ Argument ("input", "the input image(s).").type_image_in ().allow_multiple()
+ Argument ("operation", "the operation to apply, one of: " + join(operations, ", ") + ".").type_choice (operations)
+ Argument ("output", "the output image.").type_image_out ();
OPTIONS
+ Option ("axis", "perform operation along a specified axis of a single input image")
+ Argument ("index").type_integer (0)
+ DataType::options();
}
using value_type = float;
class Mean { NOMEMALIGN
public:
Mean () : sum (0.0), count (0) { }
void operator() (value_type val) {
if (std::isfinite (val)) {
sum += val;
++count;
}
}
value_type result () const {
if (!count)
return NAN;
return sum / count;
}
double sum;
size_t count;
};
class Median { NOMEMALIGN
public:
Median () { }
void operator() (value_type val) {
if (!std::isnan (val))
values.push_back(val);
}
value_type result () {
return Math::median(values);
}
vector<value_type> values;
};
class Sum { NOMEMALIGN
public:
Sum () : sum (0.0) { }
void operator() (value_type val) {
if (std::isfinite (val))
sum += val;
}
value_type result () const {
return sum;
}
double sum;
};
class Product { NOMEMALIGN
public:
Product () : product (NAN) { }
void operator() (value_type val) {
if (std::isfinite (val))
product = std::isfinite (product) ? product * val : val;
}
value_type result () const {
return product;
}
double product;
};
class RMS { NOMEMALIGN
public:
RMS() : sum (0.0), count (0) { }
void operator() (value_type val) {
if (std::isfinite (val)) {
sum += Math::pow2 (val);
++count;
}
}
value_type result() const {
if (!count)
return NAN;
return std::sqrt(sum / count);
}
double sum;
size_t count;
};
class NORM2 { NOMEMALIGN
public:
NORM2() : sum (0.0), count (0) { }
void operator() (value_type val) {
if (std::isfinite (val)) {
sum += Math::pow2 (val);
++count;
}
}
value_type result() const {
if (!count)
return NAN;
return std::sqrt(sum);
}
double sum;
size_t count;
};
class Var { NOMEMALIGN
public:
Var () : sum (0.0), sum_sqr (0.0), count (0) { }
void operator() (value_type val) {
if (std::isfinite (val)) {
sum += val;
sum_sqr += Math::pow2 (val);
++count;
}
}
value_type result () const {
if (count < 2)
return NAN;
return (sum_sqr - Math::pow2 (sum) / static_cast<double> (count)) / (static_cast<double> (count) - 1.0);
}
double sum, sum_sqr;
size_t count;
};
class Std : public Var { NOMEMALIGN
public:
Std() : Var() { }
value_type result () const { return std::sqrt (Var::result()); }
};
class Min { NOMEMALIGN
public:
Min () : min (std::numeric_limits<value_type>::infinity()) { }
void operator() (value_type val) {
if (std::isfinite (val) && val < min)
min = val;
}
value_type result () const { return std::isfinite (min) ? min : NAN; }
value_type min;
};
class Max { NOMEMALIGN
public:
Max () : max (-std::numeric_limits<value_type>::infinity()) { }
void operator() (value_type val) {
if (std::isfinite (val) && val > max)
max = val;
}
value_type result () const { return std::isfinite (max) ? max : NAN; }
value_type max;
};
class AbsMax { NOMEMALIGN
public:
AbsMax () : max (-std::numeric_limits<value_type>::infinity()) { }
void operator() (value_type val) {
if (std::isfinite (val) && std::abs(val) > max)
max = std::abs(val);
}
value_type result () const { return std::isfinite (max) ? max : NAN; }
value_type max;
};
class MagMax { NOMEMALIGN
public:
MagMax () : max (-std::numeric_limits<value_type>::infinity()) { }
MagMax (const int i) : max (-std::numeric_limits<value_type>::infinity()) { }
void operator() (value_type val) {
if (std::isfinite (val) && (!std::isfinite (max) || std::abs(val) > std::abs (max)))
max = val;
}
value_type result () const { return std::isfinite (max) ? max : NAN; }
value_type max;
};
template <class Operation>
class AxisKernel { NOMEMALIGN
public:
AxisKernel (size_t axis) : axis (axis) { }
template <class InputImageType, class OutputImageType>
void operator() (InputImageType& in, OutputImageType& out) {
Operation op;
for (auto l = Loop (axis) (in); l; ++l)
op (in.value());
out.value() = op.result();
}
protected:
const size_t axis;
};
class ImageKernelBase { NOMEMALIGN
public:
virtual void process (Header& image_in) = 0;
virtual void write_back (Image<value_type>& out) = 0;
};
template <class Operation>
class ImageKernel : public ImageKernelBase { NOMEMALIGN
protected:
class InitFunctor { NOMEMALIGN
public:
template <class ImageType>
void operator() (ImageType& out) const { out.value() = Operation(); }
};
class ProcessFunctor { NOMEMALIGN
public:
template <class ImageType1, class ImageType2>
void operator() (ImageType1& out, ImageType2& in) const {
Operation op = out.value();
op (in.value());
out.value() = op;
}
};
class ResultFunctor { NOMEMALIGN
public:
template <class ImageType1, class ImageType2>
void operator() (ImageType1& out, ImageType2& in) const {
Operation op = in.value();
out.value() = op.result();
}
};
public:
ImageKernel (const Header& header) :
image (Header::scratch (header).get_image<Operation>()) {
ThreadedLoop (image).run (InitFunctor(), image);
}
void write_back (Image<value_type>& out)
{
ThreadedLoop (image).run (ResultFunctor(), out, image);
}
void process (Header& header_in)
{
auto in = header_in.get_image<value_type>();
ThreadedLoop (image).run (ProcessFunctor(), image, in);
}
protected:
Image<Operation> image;
};
void run ()
{
const size_t num_inputs = argument.size() - 2;
const int op = argument[num_inputs];
const std::string& output_path = argument.back();
auto opt = get_options ("axis");
if (opt.size()) {
if (num_inputs != 1)
throw Exception ("Option -axis only applies if a single input image is used");
const size_t axis = opt[0][0];
auto image_in = Header::open (argument[0]).get_image<value_type>().with_direct_io (axis);
if (axis >= image_in.ndim())
throw Exception ("Cannot perform operation along axis " + str (axis) + "; image only has " + str(image_in.ndim()) + " axes");
Header header_out (image_in);
header_out.datatype() = DataType::from_command_line (DataType::Float32);
header_out.size(axis) = 1;
squeeze_dim (header_out);
auto image_out = Header::create (output_path, header_out).get_image<float>();
auto loop = ThreadedLoop (std::string("computing ") + operations[op] + " along axis " + str(axis) + "...", image_out);
switch (op) {
case 0: loop.run (AxisKernel<Mean> (axis), image_in, image_out); return;
case 1: loop.run (AxisKernel<Median> (axis), image_in, image_out); return;
case 2: loop.run (AxisKernel<Sum> (axis), image_in, image_out); return;
case 3: loop.run (AxisKernel<Product>(axis), image_in, image_out); return;
case 4: loop.run (AxisKernel<RMS> (axis), image_in, image_out); return;
case 5: loop.run (AxisKernel<NORM2> (axis), image_in, image_out); return;
case 6: loop.run (AxisKernel<Var> (axis), image_in, image_out); return;
case 7: loop.run (AxisKernel<Std> (axis), image_in, image_out); return;
case 8: loop.run (AxisKernel<Min> (axis), image_in, image_out); return;
case 9: loop.run (AxisKernel<Max> (axis), image_in, image_out); return;
case 10: loop.run (AxisKernel<AbsMax> (axis), image_in, image_out); return;
case 11: loop.run (AxisKernel<MagMax> (axis), image_in, image_out); return;
default: assert (0);
}
} else {
if (num_inputs < 2)
throw Exception ("mrmath requires either multiple input images, or the -axis option to be provided");
// Pre-load all image headers
vector<Header> headers_in (num_inputs);
// Header of first input image is the template to which all other input images are compared
headers_in[0] = Header::open (argument[0]);
Header header (headers_in[0]);
header.datatype() = DataType::from_command_line (DataType::Float32);
// Wipe any excess unary-dimensional axes
while (header.size (header.ndim() - 1) == 1)
header.ndim() = header.ndim() - 1;
// Verify that dimensions of all input images adequately match
for (size_t i = 1; i != num_inputs; ++i) {
const std::string path = argument[i];
// headers_in.push_back (std::unique_ptr<Header> (new Header (Header::open (path))));
headers_in[i] = Header::open (path);
const Header& temp (headers_in[i]);
if (temp.ndim() < header.ndim())
throw Exception ("Image " + path + " has fewer axes than first imput image " + header.name());
for (size_t axis = 0; axis != header.ndim(); ++axis) {
if (temp.size(axis) != header.size(axis))
throw Exception ("Dimensions of image " + path + " do not match those of first input image " + header.name());
}
for (size_t axis = header.ndim(); axis != temp.ndim(); ++axis) {
if (temp.size(axis) != 1)
throw Exception ("Image " + path + " has axis with non-unary dimension beyond first input image " + header.name());
}
}
// Instantiate a kernel depending on the operation requested
std::unique_ptr<ImageKernelBase> kernel;
switch (op) {
case 0: kernel.reset (new ImageKernel<Mean> (header)); break;
case 1: kernel.reset (new ImageKernel<Median> (header)); break;
case 2: kernel.reset (new ImageKernel<Sum> (header)); break;
case 3: kernel.reset (new ImageKernel<Product> (header)); break;
case 4: kernel.reset (new ImageKernel<RMS> (header)); break;
case 5: kernel.reset (new ImageKernel<NORM2> (header)); break;
case 6: kernel.reset (new ImageKernel<Var> (header)); break;
case 7: kernel.reset (new ImageKernel<Std> (header)); break;
case 8: kernel.reset (new ImageKernel<Min> (header)); break;
case 9: kernel.reset (new ImageKernel<Max> (header)); break;
case 10: kernel.reset (new ImageKernel<AbsMax> (header)); break;
case 11: kernel.reset (new ImageKernel<MagMax> (header)); break;
default: assert (0);
}
// Feed the input images to the kernel one at a time
{
ProgressBar progress (std::string("computing ") + operations[op] + " across "
+ str(headers_in.size()) + " images", num_inputs);
for (size_t i = 0; i != headers_in.size(); ++i) {
assert (headers_in[i].valid());
assert (headers_in[i].is_file_backed());
kernel->process (headers_in[i]);
++progress;
}
}
auto out = Header::create (output_path, header).get_image<value_type>();
kernel->write_back (out);
}
}