forked from mne-tools/mne-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
conftest.py
132 lines (113 loc) · 4.56 KB
/
conftest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# -*- coding: utf-8 -*-
# Author: Eric Larson <[email protected]>
#
# License: BSD (3-clause)
import os.path as op
import warnings
import pytest
# For some unknown reason, on Travis-xenial there are segfaults caused on
# the line pytest -> pdb.Pdb.__init__ -> "import readline". Forcing an
# import here seems to prevent them (!?). This suggests a potential problem
# with some other library stepping on memory where it shouldn't. It only
# seems to happen on the Linux runs that install Mayavi. Anectodally,
# @larsoner has had problems a couple of years ago where a mayavi import
# seemed to corrupt SciPy linalg function results (!), likely due to the
# associated VTK import, so this could be another manifestation of that.
try:
import readline # noqa
except Exception:
pass
import numpy as np
import mne
from mne.datasets import testing
test_path = testing.data_path(download=False)
s_path = op.join(test_path, 'MEG', 'sample')
fname_evoked = op.join(s_path, 'sample_audvis_trunc-ave.fif')
fname_cov = op.join(s_path, 'sample_audvis_trunc-cov.fif')
fname_fwd = op.join(s_path, 'sample_audvis_trunc-meg-eeg-oct-4-fwd.fif')
# turn anything that uses testing data into an auto-skipper by
# setting params=[testing_param]
testing_param = pytest.param('t', marks=pytest.mark.skipif(
testing._testing._skip_testing_data(), reason='Requires testing dataset'))
@pytest.fixture(scope='session')
def matplotlib_config():
"""Configure matplotlib for viz tests."""
import matplotlib
# "force" should not really be necessary but should not hurt
matplotlib.use('agg', force=True) # don't pop up windows
import matplotlib.pyplot as plt
assert plt.get_backend() == 'agg'
# overwrite some params that can horribly slow down tests that
# users might have changed locally (but should not otherwise affect
# functionality)
plt.ioff()
plt.rcParams['figure.dpi'] = 100
try:
from traits.etsconfig.api import ETSConfig
except Exception:
pass
else:
ETSConfig.toolkit = 'qt4'
try:
with warnings.catch_warnings(record=True): # traits
from mayavi import mlab
except Exception:
pass
else:
mlab.options.backend = 'test'
@pytest.fixture(scope='function', params=[testing_param])
def evoked():
"""Get evoked data."""
evoked = mne.read_evokeds(fname_evoked, condition='Left Auditory',
baseline=(None, 0))
evoked.crop(0, 0.2)
return evoked
@pytest.fixture(scope='function', params=[testing_param])
def noise_cov():
return mne.read_cov(fname_cov)
@pytest.fixture(scope='function')
def bias_params_free(evoked, noise_cov):
"""Provide inputs for free bias functions."""
fwd = mne.read_forward_solution(fname_fwd)
return _bias_params(evoked, noise_cov, fwd)
@pytest.fixture(scope='function')
def bias_params_fixed(evoked, noise_cov):
"""Provide inputs for fixed bias functions."""
fwd = mne.read_forward_solution(fname_fwd)
fwd = mne.convert_forward_solution(fwd, force_fixed=True, surf_ori=True)
return _bias_params(evoked, noise_cov, fwd)
def _bias_params(evoked, noise_cov, fwd):
evoked.pick_types(meg=True, eeg=True, exclude=())
# restrict to limited set of verts (small src here) and one hemi for speed
vertices = [fwd['src'][0]['vertno'].copy(), []]
stc = mne.SourceEstimate(np.zeros((sum(len(v) for v in vertices), 1)),
vertices, 0., 1.)
fwd = mne.forward.restrict_forward_to_stc(fwd, stc)
assert fwd['sol']['row_names'] == noise_cov['names']
assert noise_cov['names'] == evoked.ch_names
evoked = mne.EvokedArray(fwd['sol']['data'].copy(), evoked.info)
data_cov = noise_cov.copy()
data_cov['data'] = np.dot(fwd['sol']['data'], fwd['sol']['data'].T)
assert data_cov['data'].shape[0] == len(noise_cov['names'])
want = np.arange(fwd['sol']['data'].shape[1])
if not mne.forward.is_fixed_orient(fwd):
want //= 3
return evoked, fwd, noise_cov, data_cov, want
@pytest.fixture(scope="module", params=[
"mayavi",
"vtki",
])
def backend_name(request):
yield request.param
@pytest.yield_fixture
def backends_3d(backend_name):
from mne.viz.backends.renderer import _use_test_3d_backend
from mne.viz.backends.tests._utils import has_mayavi, has_vtki
if backend_name == 'mayavi':
if not has_mayavi():
pytest.skip("Test skipped, requires mayavi.")
elif backend_name == 'vtki':
if not has_vtki():
pytest.skip("Test skipped, requires vtki.")
with _use_test_3d_backend(backend_name):
yield