forked from mne-tools/mne-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathannotations.py
1123 lines (959 loc) · 43.6 KB
/
annotations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Authors: Jaakko Leppakangas <[email protected]>
#
# License: BSD (3-clause)
from collections import OrderedDict
from datetime import datetime, timedelta, timezone
import os.path as op
import re
from copy import deepcopy
from itertools import takewhile
from collections import Counter
from collections.abc import Iterable
import warnings
from textwrap import shorten
import numpy as np
from .utils import (_pl, check_fname, _validate_type, verbose, warn, logger,
_check_pandas_installed, _mask_to_onsets_offsets,
_DefaultEventParser, _check_dt, _stamp_to_dt, _dt_to_stamp,
_check_fname)
from .io.write import (start_block, end_block, write_float, write_name_list,
write_double, start_file)
from .io.constants import FIFF
from .io.open import fiff_open
from .io.tree import dir_tree_find
from .io.tag import read_tag
# For testing windows_like_datetime, we monkeypatch "datetime" in this module.
# Keep the true datetime object around for _validate_type use.
_datetime = datetime
def _check_o_d_s(onset, duration, description):
onset = np.atleast_1d(np.array(onset, dtype=float))
if onset.ndim != 1:
raise ValueError('Onset must be a one dimensional array, got %s '
'(shape %s).'
% (onset.ndim, onset.shape))
duration = np.array(duration, dtype=float)
if duration.ndim == 0 or duration.shape == (1,):
duration = np.repeat(duration, len(onset))
if duration.ndim != 1:
raise ValueError('Duration must be a one dimensional array, '
'got %d.' % (duration.ndim,))
description = np.array(description, dtype=str)
if description.ndim == 0 or description.shape == (1,):
description = np.repeat(description, len(onset))
if description.ndim != 1:
raise ValueError('Description must be a one dimensional array, '
'got %d.' % (description.ndim,))
if any(['{COLON}' in desc for desc in description]):
raise ValueError('The substring "{COLON}" '
'in descriptions not supported.')
if not (len(onset) == len(duration) == len(description)):
raise ValueError('Onset, duration and description must be '
'equal in sizes, got %s, %s, and %s.'
% (len(onset), len(duration), len(description)))
return onset, duration, description
class Annotations(object):
"""Annotation object for annotating segments of raw data.
.. note::
To convert events to `~mne.Annotations`, use
`~mne.annotations_from_events`. To convert existing `~mne.Annotations`
to events, use `~mne.events_from_annotations`.
Parameters
----------
onset : array of float, shape (n_annotations,)
The starting time of annotations in seconds after ``orig_time``.
duration : array of float, shape (n_annotations,) | float
Durations of the annotations in seconds. If a float, all the
annotations are given the same duration.
description : array of str, shape (n_annotations,) | str
Array of strings containing description for each annotation. If a
string, all the annotations are given the same description. To reject
epochs, use description starting with keyword 'bad'. See example above.
orig_time : float | str | datetime | tuple of int | None
A POSIX Timestamp, datetime or a tuple containing the timestamp as the
first element and microseconds as the second element. Determines the
starting time of annotation acquisition. If None (default),
starting time is determined from beginning of raw data acquisition.
In general, ``raw.info['meas_date']`` (or None) can be used for syncing
the annotations with raw data if their acquisiton is started at the
same time. If it is a string, it should conform to the ISO8601 format.
More precisely to this '%Y-%m-%d %H:%M:%S.%f' particular case of the
ISO8601 format where the delimiter between date and time is ' '.
See Also
--------
mne.annotations_from_events
mne.events_from_annotations
Notes
-----
Annotations are added to instance of :class:`mne.io.Raw` as the attribute
:attr:`raw.annotations <mne.io.Raw.annotations>`.
To reject bad epochs using annotations, use
annotation description starting with 'bad' keyword. The epochs with
overlapping bad segments are then rejected automatically by default.
To remove epochs with blinks you can do:
>>> eog_events = mne.preprocessing.find_eog_events(raw) # doctest: +SKIP
>>> n_blinks = len(eog_events) # doctest: +SKIP
>>> onset = eog_events[:, 0] / raw.info['sfreq'] - 0.25 # doctest: +SKIP
>>> duration = np.repeat(0.5, n_blinks) # doctest: +SKIP
>>> description = ['bad blink'] * n_blinks # doctest: +SKIP
>>> annotations = mne.Annotations(onset, duration, description) # doctest: +SKIP
>>> raw.set_annotations(annotations) # doctest: +SKIP
>>> epochs = mne.Epochs(raw, events, event_id, tmin, tmax) # doctest: +SKIP
**orig_time**
If ``orig_time`` is None, the annotations are synced to the start of the
data (0 seconds). Otherwise the annotations are synced to sample 0 and
``raw.first_samp`` is taken into account the same way as with events.
When setting annotations, the following alignments
between ``raw.info['meas_date']`` and ``annotation.orig_time`` take place:
::
----------- meas_date=XX, orig_time=YY -----------------------------
| +------------------+
|______________| RAW |
| | |
| +------------------+
meas_date first_samp
.
. | +------+
. |_________| ANOT |
. | | |
. | +------+
. orig_time onset[0]
.
| +------+
|___________________| |
| | |
| +------+
orig_time onset[0]'
----------- meas_date=XX, orig_time=None ---------------------------
| +------------------+
|______________| RAW |
| | |
| +------------------+
. N +------+
. o_________| ANOT |
. n | |
. e +------+
.
| +------+
|________________________| |
| | |
| +------+
orig_time onset[0]'
----------- meas_date=None, orig_time=YY ---------------------------
N +------------------+
o______________| RAW |
n | |
e +------------------+
| +------+
|_________| ANOT |
| | |
| +------+
[[[ CRASH ]]]
----------- meas_date=None, orig_time=None -------------------------
N +------------------+
o______________| RAW |
n | |
e +------------------+
. N +------+
. o_________| ANOT |
. n | |
. e +------+
.
N +------+
o________________________| |
n | |
e +------+
orig_time onset[0]'
""" # noqa: E501
def __init__(self, onset, duration, description,
orig_time=None): # noqa: D102
self._orig_time = _handle_meas_date(orig_time)
self.onset, self.duration, self.description = _check_o_d_s(
onset, duration, description)
self._sort() # ensure we're sorted
@property
def orig_time(self):
"""The time base of the Annotations."""
return self._orig_time
def __eq__(self, other):
"""Compare to another Annotations instance."""
if not isinstance(other, Annotations):
return False
return (np.array_equal(self.onset, other.onset) and
np.array_equal(self.duration, other.duration) and
np.array_equal(self.description, other.description) and
self.orig_time == other.orig_time)
def __repr__(self):
"""Show the representation."""
counter = Counter(self.description)
kinds = ', '.join(['%s (%s)' % k for k in sorted(counter.items())])
kinds = (': ' if len(kinds) > 0 else '') + kinds
s = ('Annotations | %s segment%s%s' %
(len(self.onset), _pl(len(self.onset)), kinds))
return '<' + shorten(s, width=77, placeholder=' ...') + '>'
def __len__(self):
"""Return the number of annotations."""
return len(self.duration)
def __add__(self, other):
"""Add (concatencate) two Annotation objects."""
out = self.copy()
out += other
return out
def __iadd__(self, other):
"""Add (concatencate) two Annotation objects in-place.
Both annotations must have the same orig_time
"""
if len(self) == 0:
self._orig_time = other.orig_time
if self.orig_time != other.orig_time:
raise ValueError("orig_time should be the same to "
"add/concatenate 2 annotations "
"(got %s != %s)" % (self.orig_time,
other.orig_time))
return self.append(other.onset, other.duration, other.description)
def __iter__(self):
"""Iterate over the annotations."""
for idx in range(len(self.onset)):
yield self.__getitem__(idx)
def __getitem__(self, key):
"""Propagate indexing and slicing to the underlying numpy structure."""
if isinstance(key, int):
out_keys = ('onset', 'duration', 'description', 'orig_time')
out_vals = (self.onset[key], self.duration[key],
self.description[key], self.orig_time)
return OrderedDict(zip(out_keys, out_vals))
else:
key = list(key) if isinstance(key, tuple) else key
return Annotations(onset=self.onset[key],
duration=self.duration[key],
description=self.description[key],
orig_time=self.orig_time)
def append(self, onset, duration, description):
"""Add an annotated segment. Operates inplace.
Parameters
----------
onset : float | array-like
Annotation time onset from the beginning of the recording in
seconds.
duration : float | array-like
Duration of the annotation in seconds.
description : str | array-like
Description for the annotation. To reject epochs, use description
starting with keyword 'bad'.
Returns
-------
self : mne.Annotations
The modified Annotations object.
Notes
-----
The array-like support for arguments allows this to be used similarly
to not only ``list.append``, but also
`list.extend <https://docs.python.org/3/library/stdtypes.html#mutable-sequence-types>`__.
""" # noqa: E501
onset, duration, description = _check_o_d_s(
onset, duration, description)
self.onset = np.append(self.onset, onset)
self.duration = np.append(self.duration, duration)
self.description = np.append(self.description, description)
self._sort()
return self
def copy(self):
"""Return a copy of the Annotations.
Returns
-------
inst : instance of Annotations
A copy of the object.
"""
return deepcopy(self)
def delete(self, idx):
"""Remove an annotation. Operates inplace.
Parameters
----------
idx : int | array-like of int
Index of the annotation to remove. Can be array-like to
remove multiple indices.
"""
self.onset = np.delete(self.onset, idx)
self.duration = np.delete(self.duration, idx)
self.description = np.delete(self.description, idx)
def save(self, fname):
"""Save annotations to FIF, CSV or TXT.
Typically annotations get saved in the FIF file for raw data
(e.g., as ``raw.annotations``), but this offers the possibility
to also save them to disk separately in different file formats
which are easier to share between packages.
Parameters
----------
fname : str
The filename to use.
"""
check_fname(fname, 'annotations', ('-annot.fif', '-annot.fif.gz',
'_annot.fif', '_annot.fif.gz',
'.txt', '.csv'))
if fname.endswith(".txt"):
_write_annotations_txt(fname, self)
elif fname.endswith(".csv"):
_write_annotations_csv(fname, self)
else:
with start_file(fname) as fid:
_write_annotations(fid, self)
def _sort(self):
"""Sort in place."""
# instead of argsort here we use sorted so that it gives us
# the onset-then-duration hierarchy
vals = sorted(zip(self.onset, self.duration, range(len(self))))
order = list(list(zip(*vals))[-1]) if len(vals) else []
self.onset = self.onset[order]
self.duration = self.duration[order]
self.description = self.description[order]
@verbose
def crop(self, tmin=None, tmax=None, emit_warning=False, verbose=None):
"""Remove all annotation that are outside of [tmin, tmax].
The method operates inplace.
Parameters
----------
tmin : float | datetime | None
Start time of selection in seconds.
tmax : float | datetime | None
End time of selection in seconds.
emit_warning : bool
Whether to emit warnings when limiting or omitting annotations.
Defaults to False.
%(verbose_meth)s
Returns
-------
self : instance of Annotations
The cropped Annotations object.
"""
if len(self) == 0:
return self # no annotations, nothing to do
if self.orig_time is None:
offset = _handle_meas_date(0)
else:
offset = self.orig_time
if tmin is None:
tmin = timedelta(self.onset.min()) + offset
if tmax is None:
tmax = timedelta((self.onset + self.duration).max()) + offset
for key, val in [('tmin', tmin), ('tmax', tmax)]:
_validate_type(val, ('numeric', _datetime), key,
'numeric, datetime, or None')
if tmin > tmax:
raise ValueError('tmax should be greater than or equal to tmin '
'(%s < %s).' % (tmax, tmin))
logger.debug('Cropping annotations %s - %s' % (tmin, tmax))
absolute_tmin = _handle_meas_date(tmin)
absolute_tmax = _handle_meas_date(tmax)
del tmin, tmax
onsets, durations, descriptions = [], [], []
out_of_bounds, clip_left_elem, clip_right_elem = [], [], []
for onset, duration, description in zip(
self.onset, self.duration, self.description):
# if duration is NaN behave like a zero
if np.isnan(duration):
duration = 0.
# convert to absolute times
absolute_onset = timedelta(0, onset) + offset
absolute_offset = absolute_onset + timedelta(0, duration)
out_of_bounds.append(
absolute_onset > absolute_tmax or
absolute_offset < absolute_tmin)
if out_of_bounds[-1]:
clip_left_elem.append(False)
clip_right_elem.append(False)
else:
# clip the left side
clip_left_elem.append(absolute_onset < absolute_tmin)
if clip_left_elem[-1]:
absolute_onset = absolute_tmin
clip_right_elem.append(absolute_offset > absolute_tmax)
if clip_right_elem[-1]:
absolute_offset = absolute_tmax
if clip_left_elem[-1] or clip_right_elem[-1]:
durations.append(
(absolute_offset - absolute_onset).total_seconds())
else:
durations.append(duration)
onsets.append(
(absolute_onset - offset).total_seconds())
descriptions.append(description)
self.onset = np.array(onsets, float)
self.duration = np.array(durations, float)
assert (self.duration >= 0).all()
self.description = np.array(descriptions, dtype=str)
if emit_warning:
omitted = np.array(out_of_bounds).sum()
if omitted > 0:
warn('Omitted %s annotation(s) that were outside data'
' range.' % omitted)
limited = (np.array(clip_left_elem) |
np.array(clip_right_elem)).sum()
if limited > 0:
warn('Limited %s annotation(s) that were expanding outside the'
' data range.' % limited)
return self
def _combine_annotations(one, two, one_n_samples, one_first_samp,
two_first_samp, sfreq, meas_date):
"""Combine a tuple of annotations."""
assert one is not None
assert two is not None
shift = one_n_samples / sfreq # to the right by the number of samples
shift += one_first_samp / sfreq # to the right by the offset
shift -= two_first_samp / sfreq # undo its offset
onset = np.concatenate([one.onset, two.onset + shift])
duration = np.concatenate([one.duration, two.duration])
description = np.concatenate([one.description, two.description])
return Annotations(onset, duration, description, one.orig_time)
def _handle_meas_date(meas_date):
"""Convert meas_date to datetime or None.
If `meas_date` is a string, it should conform to the ISO8601 format.
More precisely to this '%Y-%m-%d %H:%M:%S.%f' particular case of the
ISO8601 format where the delimiter between date and time is ' '.
Note that ISO8601 allows for ' ' or 'T' as delimiters between date and
time.
"""
if isinstance(meas_date, str):
ACCEPTED_ISO8601 = '%Y-%m-%d %H:%M:%S.%f'
try:
meas_date = datetime.strptime(meas_date, ACCEPTED_ISO8601)
except ValueError:
meas_date = None
else:
meas_date = meas_date.replace(tzinfo=timezone.utc)
elif isinstance(meas_date, tuple):
# old way
meas_date = _stamp_to_dt(meas_date)
if meas_date is not None:
if np.isscalar(meas_date):
# It would be nice just to do:
#
# meas_date = datetime.fromtimestamp(meas_date, timezone.utc)
#
# But Windows does not like timestamps < 0. So we'll use
# our specialized wrapper instead:
meas_date = np.array(np.modf(meas_date)[::-1])
meas_date *= [1, 1e6]
meas_date = _stamp_to_dt(np.round(meas_date))
_check_dt(meas_date) # run checks
return meas_date
def _sync_onset(raw, onset, inverse=False):
"""Adjust onsets in relation to raw data."""
offset = (-1 if inverse else 1) * raw._first_time
assert raw.info['meas_date'] == raw.annotations.orig_time
annot_start = onset - offset
return annot_start
def _annotations_starts_stops(raw, kinds, name='skip_by_annotation',
invert=False):
"""Get starts and stops from given kinds.
onsets and ends are inclusive.
"""
_validate_type(kinds, (str, list, tuple), name)
if isinstance(kinds, str):
kinds = [kinds]
else:
for kind in kinds:
_validate_type(kind, 'str', "All entries")
if len(raw.annotations) == 0:
onsets, ends = np.array([], int), np.array([], int)
else:
idxs = [idx for idx, desc in enumerate(raw.annotations.description)
if any(desc.upper().startswith(kind.upper())
for kind in kinds)]
# onsets are already sorted
onsets = raw.annotations.onset[idxs]
onsets = _sync_onset(raw, onsets)
ends = onsets + raw.annotations.duration[idxs]
onsets = raw.time_as_index(onsets, use_rounding=True)
ends = raw.time_as_index(ends, use_rounding=True)
assert (onsets <= ends).all() # all durations >= 0
if invert:
# We need to eliminate overlaps here, otherwise wacky things happen,
# so we carefully invert the relationship
mask = np.zeros(len(raw.times), bool)
for onset, end in zip(onsets, ends):
mask[onset:end] = True
mask = ~mask
extras = (onsets == ends)
extra_onsets, extra_ends = onsets[extras], ends[extras]
onsets, ends = _mask_to_onsets_offsets(mask)
# Keep ones where things were exactly equal
del extras
# we could do this with a np.insert+np.searchsorted, but our
# ordered-ness should get us it for free
onsets = np.sort(np.concatenate([onsets, extra_onsets]))
ends = np.sort(np.concatenate([ends, extra_ends]))
assert (onsets <= ends).all()
return onsets, ends
def _write_annotations(fid, annotations):
"""Write annotations."""
start_block(fid, FIFF.FIFFB_MNE_ANNOTATIONS)
write_float(fid, FIFF.FIFF_MNE_BASELINE_MIN, annotations.onset)
write_float(fid, FIFF.FIFF_MNE_BASELINE_MAX,
annotations.duration + annotations.onset)
# To allow : in description, they need to be replaced for serialization
# -> replace with "{COLON}". When read back in, replace it back with ":"
write_name_list(fid, FIFF.FIFF_COMMENT, [d.replace(':', '{COLON}') for d in
annotations.description])
if annotations.orig_time is not None:
write_double(fid, FIFF.FIFF_MEAS_DATE,
_dt_to_stamp(annotations.orig_time))
end_block(fid, FIFF.FIFFB_MNE_ANNOTATIONS)
def _write_annotations_csv(fname, annot):
pd = _check_pandas_installed(strict=True)
dt = _handle_meas_date(annot.orig_time)
if dt is None:
dt = _handle_meas_date(0)
dt = dt.replace(tzinfo=None)
onsets_dt = [dt + timedelta(seconds=o) for o in annot.onset]
df = pd.DataFrame(dict(onset=onsets_dt, duration=annot.duration,
description=annot.description))
df.to_csv(fname, index=False)
def _write_annotations_txt(fname, annot):
content = "# MNE-Annotations\n"
if annot.orig_time is not None:
# for backward compat, we do not write tzinfo (assumed UTC)
content += ("# orig_time : %s \n"
% annot.orig_time.replace(tzinfo=None))
content += "# onset, duration, description\n"
data = np.array([annot.onset, annot.duration, annot.description],
dtype=str).T
with open(fname, 'wb') as fid:
fid.write(content.encode())
np.savetxt(fid, data, delimiter=',', fmt="%s")
def read_annotations(fname, sfreq='auto', uint16_codec=None):
r"""Read annotations from a file.
This function reads a .fif, .fif.gz, .vrmk, .edf, .txt, .csv .cnt, .cef,
or .set file and makes an :class:`mne.Annotations` object.
Parameters
----------
fname : str
The filename.
sfreq : float | 'auto'
The sampling frequency in the file. This parameter is necessary for
\*.vmrk and \*.cef files as Annotations are expressed in seconds and
\*.vmrk/\*.cef files are in samples. For any other file format,
``sfreq`` is omitted. If set to 'auto' then the ``sfreq`` is taken
from the respective info file of the same name with according file
extension (\*.vhdr for brainvision; \*.dap for Curry 7; \*.cdt.dpa for
Curry 8). So data.vrmk looks for sfreq in data.vhdr, data.cef looks in
data.dap and data.cdt.cef looks in data.cdt.dpa.
uint16_codec : str | None
This parameter is only used in EEGLAB (\*.set) and omitted otherwise.
If your \*.set file contains non-ascii characters, sometimes reading
it may fail and give rise to error message stating that "buffer is
too small". ``uint16_codec`` allows to specify what codec (for example:
'latin1' or 'utf-8') should be used when reading character arrays and
can therefore help you solve this problem.
Returns
-------
annot : instance of Annotations | None
The annotations.
Notes
-----
The annotations stored in a .csv require the onset columns to be
timestamps. If you have onsets as floats (in seconds), you should use the
.txt extension.
"""
from .io.brainvision.brainvision import _read_annotations_brainvision
from .io.eeglab.eeglab import _read_annotations_eeglab
from .io.edf.edf import _read_annotations_edf
from .io.cnt.cnt import _read_annotations_cnt
from .io.curry.curry import _read_annotations_curry
from .io.ctf.markers import _read_annotations_ctf
_validate_type(fname, 'path-like', 'fname')
fname = _check_fname(
fname, overwrite='read', must_exist=True,
allow_dir=str(fname).endswith('.ds'), # allow_dir for CTF
name='fname')
name = op.basename(fname)
if name.endswith(('fif', 'fif.gz')):
# Read FiF files
ff, tree, _ = fiff_open(fname, preload=False)
with ff as fid:
annotations = _read_annotations_fif(fid, tree)
elif name.endswith('txt'):
orig_time = _read_annotations_txt_parse_header(fname)
onset, duration, description = _read_annotations_txt(fname)
annotations = Annotations(onset=onset, duration=duration,
description=description,
orig_time=orig_time)
elif name.endswith('vmrk'):
annotations = _read_annotations_brainvision(fname, sfreq=sfreq)
elif name.endswith('csv'):
annotations = _read_annotations_csv(fname)
elif name.endswith('cnt'):
annotations = _read_annotations_cnt(fname)
elif name.endswith('ds'):
annotations = _read_annotations_ctf(fname)
elif name.endswith('cef'):
annotations = _read_annotations_curry(fname, sfreq=sfreq)
elif name.endswith('set'):
annotations = _read_annotations_eeglab(fname,
uint16_codec=uint16_codec)
elif name.endswith(('edf', 'bdf', 'gdf')):
onset, duration, description = _read_annotations_edf(fname)
onset = np.array(onset, dtype=float)
duration = np.array(duration, dtype=float)
annotations = Annotations(onset=onset, duration=duration,
description=description,
orig_time=None)
elif name.startswith('events_') and fname.endswith('mat'):
annotations = _read_brainstorm_annotations(fname)
else:
raise IOError('Unknown annotation file format "%s"' % fname)
if annotations is None:
raise IOError('No annotation data found in file "%s"' % fname)
return annotations
def _read_annotations_csv(fname):
"""Read annotations from csv.
Parameters
----------
fname : str
The filename.
Returns
-------
annot : instance of Annotations
The annotations.
"""
pd = _check_pandas_installed(strict=True)
df = pd.read_csv(fname)
orig_time = df['onset'].values[0]
try:
float(orig_time)
warn('It looks like you have provided annotation onsets as floats. '
'These will be interpreted as MILLISECONDS. If that is not what '
'you want, save your CSV as a TXT file; the TXT reader accepts '
'onsets in seconds.')
except ValueError:
pass
onset_dt = pd.to_datetime(df['onset'])
onset = (onset_dt - onset_dt[0]).dt.total_seconds()
duration = df['duration'].values.astype(float)
description = df['description'].values
return Annotations(onset, duration, description, orig_time)
def _read_brainstorm_annotations(fname, orig_time=None):
"""Read annotations from a Brainstorm events_ file.
Parameters
----------
fname : str
The filename
orig_time : float | int | instance of datetime | array of int | None
A POSIX Timestamp, datetime or an array containing the timestamp as the
first element and microseconds as the second element. Determines the
starting time of annotation acquisition. If None (default),
starting time is determined from beginning of raw data acquisition.
In general, ``raw.info['meas_date']`` (or None) can be used for syncing
the annotations with raw data if their acquisiton is started at the
same time.
Returns
-------
annot : instance of Annotations | None
The annotations.
"""
from scipy import io
def get_duration_from_times(t):
return t[1] - t[0] if t.shape[0] == 2 else np.zeros(len(t[0]))
annot_data = io.loadmat(fname)
onsets, durations, descriptions = (list(), list(), list())
for label, _, _, _, times, _, _ in annot_data['events'][0]:
onsets.append(times[0])
durations.append(get_duration_from_times(times))
n_annot = len(times[0])
descriptions += [str(label[0])] * n_annot
return Annotations(onset=np.concatenate(onsets),
duration=np.concatenate(durations),
description=descriptions,
orig_time=orig_time)
def _is_iso8601(candidate_str):
ISO8601 = r'^\d{4}-\d{2}-\d{2}[ T]\d{2}:\d{2}:\d{2}\.\d{6}$'
return re.compile(ISO8601).match(candidate_str) is not None
def _read_annotations_txt_parse_header(fname):
def is_orig_time(x):
return x.startswith('# orig_time :')
with open(fname) as fid:
header = list(takewhile(lambda x: x.startswith('#'), fid))
orig_values = [h[13:].strip() for h in header if is_orig_time(h)]
orig_values = [_handle_meas_date(orig) for orig in orig_values
if _is_iso8601(orig)]
return None if not orig_values else orig_values[0]
def _read_annotations_txt(fname):
with warnings.catch_warnings(record=True):
warnings.simplefilter("ignore")
out = np.loadtxt(fname, delimiter=',',
dtype=np.bytes_, unpack=True)
if len(out) == 0:
onset, duration, desc = [], [], []
else:
onset, duration, desc = out
onset = [float(o.decode()) for o in np.atleast_1d(onset)]
duration = [float(d.decode()) for d in np.atleast_1d(duration)]
desc = [str(d.decode()).strip() for d in np.atleast_1d(desc)]
return onset, duration, desc
def _read_annotations_fif(fid, tree):
"""Read annotations."""
annot_data = dir_tree_find(tree, FIFF.FIFFB_MNE_ANNOTATIONS)
if len(annot_data) == 0:
annotations = None
else:
annot_data = annot_data[0]
orig_time = None
onset, duration, description = list(), list(), list()
for ent in annot_data['directory']:
kind = ent.kind
pos = ent.pos
tag = read_tag(fid, pos)
if kind == FIFF.FIFF_MNE_BASELINE_MIN:
onset = tag.data
onset = list() if onset is None else onset
elif kind == FIFF.FIFF_MNE_BASELINE_MAX:
duration = tag.data
duration = list() if duration is None else duration - onset
elif kind == FIFF.FIFF_COMMENT:
description = tag.data.split(':')
# replace all "{COLON}" in FIF files with necessary
# : character
description = [d.replace('{COLON}', ':') for d in
description]
elif kind == FIFF.FIFF_MEAS_DATE:
orig_time = tag.data
try:
orig_time = float(orig_time) # old way
except TypeError:
orig_time = tuple(orig_time) # new way
assert len(onset) == len(duration) == len(description)
annotations = Annotations(onset, duration, description,
orig_time)
return annotations
def _select_annotations_based_on_description(descriptions, event_id, regexp):
"""Get a collection of descriptions and returns index of selected."""
regexp_comp = re.compile('.*' if regexp is None else regexp)
event_id_ = dict()
dropped = []
# Iterate over the sorted descriptions so that the Counter mapping
# is slightly less arbitrary
for desc in sorted(descriptions):
if desc in event_id_:
continue
if regexp_comp.match(desc) is None:
continue
if isinstance(event_id, dict):
if desc in event_id:
event_id_[desc] = event_id[desc]
else:
continue
else:
trigger = event_id(desc)
if trigger is not None:
event_id_[desc] = trigger
else:
dropped.append(desc)
event_sel = [ii for ii, kk in enumerate(descriptions)
if kk in event_id_]
if len(event_sel) == 0 and regexp is not None:
raise ValueError('Could not find any of the events you specified.')
return event_sel, event_id_
def _select_events_based_on_id(events, event_desc):
"""Get a collection of events and returns index of selected."""
event_desc_ = dict()
func = event_desc.get if isinstance(event_desc, dict) else event_desc
event_ids = events[np.unique(events[:, 2], return_index=True)[1], 2]
for e in event_ids:
trigger = func(e)
if trigger is not None:
event_desc_[e] = trigger
event_sel = [ii for ii, e in enumerate(events) if e[2] in event_desc_]
if len(event_sel) == 0:
raise ValueError('Could not find any of the events you specified.')
return event_sel, event_desc_
def _check_event_id(event_id, raw):
from .io.brainvision.brainvision import _BVEventParser
from .io.brainvision.brainvision import _check_bv_annot
from .io.brainvision.brainvision import RawBrainVision
from .io import RawFIF, RawArray
if event_id is None:
return _DefaultEventParser()
elif event_id == 'auto':
if isinstance(raw, RawBrainVision):
return _BVEventParser()
elif (isinstance(raw, (RawFIF, RawArray)) and
_check_bv_annot(raw.annotations.description)):
logger.info('Non-RawBrainVision raw using branvision markers')
return _BVEventParser()
else:
return _DefaultEventParser()
elif callable(event_id) or isinstance(event_id, dict):
return event_id
else:
raise ValueError('Invalid type for event_id (should be None, str, '
'dict or callable). Got {}'.format(type(event_id)))
def _check_event_description(event_desc, events):
"""Check event_id and convert to default format."""
if event_desc is None: # convert to int to make typing-checks happy
event_desc = list(np.unique(events[:, 2]))
if isinstance(event_desc, dict):
for val in event_desc.values():
_validate_type(val, (str, None), 'Event names')
elif isinstance(event_desc, Iterable):
event_desc = np.asarray(event_desc)
if event_desc.ndim != 1:
raise ValueError('event_desc must be 1D, got shape {}'.format(
event_desc.shape))
event_desc = dict(zip(event_desc, map(str, event_desc)))
elif callable(event_desc):
pass
else:
raise ValueError('Invalid type for event_desc (should be None, list, '
'1darray, dict or callable). Got {}'.format(
type(event_desc)))
return event_desc
@verbose
def events_from_annotations(raw, event_id="auto",
regexp=r'^(?![Bb][Aa][Dd]|[Ee][Dd][Gg][Ee]).*$',
use_rounding=True, chunk_duration=None,
verbose=None):
"""Get events and event_id from an Annotations object.
Parameters
----------
raw : instance of Raw
The raw data for which Annotations are defined.
event_id : dict | callable | None | 'auto'
Can be:
- **dict**: map descriptions (keys) to integer event codes (values).
Only the descriptions present will be mapped, others will be ignored.
- **callable**: must take a string input and return an integer event
code, or return ``None`` to ignore the event.
- **None**: Map descriptions to unique integer values based on their
``sorted`` order.
- **'auto' (default)**: prefer a raw-format-specific parser:
- Brainvision: map stimulus events to their integer part; response
events to integer part + 1000; optic events to integer part + 2000;
'SyncStatus/Sync On' to 99998; 'New Segment/' to 99999;
all others like ``None`` with an offset of 10000.
- Other raw formats: Behaves like None.
.. versionadded:: 0.18
regexp : str | None
Regular expression used to filter the annotations whose
descriptions is a match. The default ignores descriptions beginning
``'bad'`` or ``'edge'`` (case-insensitive).
.. versionchanged:: 0.18
Default ignores bad and edge descriptions.
use_rounding : bool
If True, use rounding (instead of truncation) when converting
times to indices. This can help avoid non-unique indices.
chunk_duration : float | None
Chunk duration in seconds. If ``chunk_duration`` is set to None
(default), generated events correspond to the annotation onsets.
If not, :func:`mne.events_from_annotations` returns as many events as
they fit within the annotation duration spaced according to
``chunk_duration``. As a consequence annotations with duration shorter
than ``chunk_duration`` will not contribute events.
%(verbose)s
Returns
-------
events : ndarray, shape (n_events, 3)
The events.
event_id : dict
The event_id variable that can be passed to Epochs.