forked from oobabooga/text-generation-webui
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.py
464 lines (394 loc) · 30.2 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
import io
import json
import re
import sys
import time
import zipfile
from pathlib import Path
import gradio as gr
import modules.chat as chat
import modules.extensions as extensions_module
import modules.shared as shared
import modules.ui as ui
from modules.html_generator import generate_chat_html
from modules.LoRA import add_lora_to_model
from modules.models import load_model, load_soft_prompt
from modules.text_generation import clear_torch_cache, generate_reply
# Loading custom settings
settings_file = None
if shared.args.settings is not None and Path(shared.args.settings).exists():
settings_file = Path(shared.args.settings)
elif Path('settings.json').exists():
settings_file = Path('settings.json')
if settings_file is not None:
print(f"Loading settings from {settings_file}...")
new_settings = json.loads(open(settings_file, 'r').read())
for item in new_settings:
shared.settings[item] = new_settings[item]
def get_available_models():
if shared.args.flexgen:
return sorted([re.sub('-np$', '', item.name) for item in list(Path('models/').glob('*')) if item.name.endswith('-np')], key=str.lower)
else:
return sorted([re.sub('.pth$', '', item.name) for item in list(Path('models/').glob('*')) if not item.name.endswith(('.txt', '-np', '.pt', '.json'))], key=str.lower)
def get_available_presets():
return sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('presets').glob('*.txt'))), key=str.lower)
def get_available_characters():
return ['None'] + sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('characters').glob('*.json'))), key=str.lower)
def get_available_extensions():
return sorted(set(map(lambda x : x.parts[1], Path('extensions').glob('*/script.py'))), key=str.lower)
def get_available_softprompts():
return ['None'] + sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('softprompts').glob('*.zip'))), key=str.lower)
def get_available_loras():
return ['None'] + sorted([item.name for item in list(Path('loras/').glob('*')) if not item.name.endswith(('.txt', '-np', '.pt', '.json'))], key=str.lower)
def load_model_wrapper(selected_model):
if selected_model != shared.model_name:
shared.model_name = selected_model
shared.model = shared.tokenizer = None
clear_torch_cache()
shared.model, shared.tokenizer = load_model(shared.model_name)
return selected_model
def load_lora_wrapper(selected_lora):
add_lora_to_model(selected_lora)
default_text = shared.settings['lora_prompts'][next((k for k in shared.settings['lora_prompts'] if re.match(k.lower(), shared.lora_name.lower())), 'default')]
return selected_lora, default_text
def load_preset_values(preset_menu, return_dict=False):
generate_params = {
'do_sample': True,
'temperature': 1,
'top_p': 1,
'typical_p': 1,
'repetition_penalty': 1,
'encoder_repetition_penalty': 1,
'top_k': 50,
'num_beams': 1,
'penalty_alpha': 0,
'min_length': 0,
'length_penalty': 1,
'no_repeat_ngram_size': 0,
'early_stopping': False,
}
with open(Path(f'presets/{preset_menu}.txt'), 'r') as infile:
preset = infile.read()
for i in preset.splitlines():
i = i.rstrip(',').strip().split('=')
if len(i) == 2 and i[0].strip() != 'tokens':
generate_params[i[0].strip()] = eval(i[1].strip())
generate_params['temperature'] = min(1.99, generate_params['temperature'])
if return_dict:
return generate_params
else:
return preset_menu, generate_params['do_sample'], generate_params['temperature'], generate_params['top_p'], generate_params['typical_p'], generate_params['repetition_penalty'], generate_params['encoder_repetition_penalty'], generate_params['top_k'], generate_params['min_length'], generate_params['no_repeat_ngram_size'], generate_params['num_beams'], generate_params['penalty_alpha'], generate_params['length_penalty'], generate_params['early_stopping']
def upload_soft_prompt(file):
with zipfile.ZipFile(io.BytesIO(file)) as zf:
zf.extract('meta.json')
j = json.loads(open('meta.json', 'r').read())
name = j['name']
Path('meta.json').unlink()
with open(Path(f'softprompts/{name}.zip'), 'wb') as f:
f.write(file)
return name
def create_model_and_preset_menus():
with gr.Row():
with gr.Column():
with gr.Row():
shared.gradio['model_menu'] = gr.Dropdown(choices=available_models, value=shared.model_name, label='Model')
ui.create_refresh_button(shared.gradio['model_menu'], lambda : None, lambda : {'choices': get_available_models()}, 'refresh-button')
with gr.Column():
with gr.Row():
shared.gradio['preset_menu'] = gr.Dropdown(choices=available_presets, value=default_preset if not shared.args.flexgen else 'Naive', label='Generation parameters preset')
ui.create_refresh_button(shared.gradio['preset_menu'], lambda : None, lambda : {'choices': get_available_presets()}, 'refresh-button')
def create_settings_menus(default_preset):
generate_params = load_preset_values(default_preset if not shared.args.flexgen else 'Naive', return_dict=True)
with gr.Row():
with gr.Column():
with gr.Box():
gr.Markdown('Custom generation parameters ([reference](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig))')
with gr.Row():
with gr.Column():
shared.gradio['temperature'] = gr.Slider(0.01, 1.99, value=generate_params['temperature'], step=0.01, label='temperature')
shared.gradio['top_p'] = gr.Slider(0.0,1.0,value=generate_params['top_p'],step=0.01,label='top_p')
shared.gradio['top_k'] = gr.Slider(0,200,value=generate_params['top_k'],step=1,label='top_k')
shared.gradio['typical_p'] = gr.Slider(0.0,1.0,value=generate_params['typical_p'],step=0.01,label='typical_p')
with gr.Column():
shared.gradio['repetition_penalty'] = gr.Slider(1.0, 1.5, value=generate_params['repetition_penalty'],step=0.01,label='repetition_penalty')
shared.gradio['encoder_repetition_penalty'] = gr.Slider(0.8, 1.5, value=generate_params['encoder_repetition_penalty'],step=0.01,label='encoder_repetition_penalty')
shared.gradio['no_repeat_ngram_size'] = gr.Slider(0, 20, step=1, value=generate_params['no_repeat_ngram_size'], label='no_repeat_ngram_size')
shared.gradio['min_length'] = gr.Slider(0, 2000, step=1, value=generate_params['min_length'] if shared.args.no_stream else 0, label='min_length', interactive=shared.args.no_stream)
shared.gradio['do_sample'] = gr.Checkbox(value=generate_params['do_sample'], label='do_sample')
with gr.Column():
with gr.Box():
gr.Markdown('Contrastive search')
shared.gradio['penalty_alpha'] = gr.Slider(0, 5, value=generate_params['penalty_alpha'], label='penalty_alpha')
with gr.Box():
gr.Markdown('Beam search (uses a lot of VRAM)')
with gr.Row():
with gr.Column():
shared.gradio['num_beams'] = gr.Slider(1, 20, step=1, value=generate_params['num_beams'], label='num_beams')
with gr.Column():
shared.gradio['length_penalty'] = gr.Slider(-5, 5, value=generate_params['length_penalty'], label='length_penalty')
shared.gradio['early_stopping'] = gr.Checkbox(value=generate_params['early_stopping'], label='early_stopping')
shared.gradio['seed'] = gr.Number(value=-1, label='Seed (-1 for random)')
with gr.Row():
shared.gradio['preset_menu_mirror'] = gr.Dropdown(choices=available_presets, value=default_preset if not shared.args.flexgen else 'Naive', label='Generation parameters preset')
ui.create_refresh_button(shared.gradio['preset_menu_mirror'], lambda : None, lambda : {'choices': get_available_presets()}, 'refresh-button')
with gr.Row():
shared.gradio['lora_menu'] = gr.Dropdown(choices=available_loras, value=shared.lora_name, label='LoRA')
ui.create_refresh_button(shared.gradio['lora_menu'], lambda : None, lambda : {'choices': get_available_loras()}, 'refresh-button')
with gr.Accordion('Soft prompt', open=False):
with gr.Row():
shared.gradio['softprompts_menu'] = gr.Dropdown(choices=available_softprompts, value='None', label='Soft prompt')
ui.create_refresh_button(shared.gradio['softprompts_menu'], lambda : None, lambda : {'choices': get_available_softprompts()}, 'refresh-button')
gr.Markdown('Upload a soft prompt (.zip format):')
with gr.Row():
shared.gradio['upload_softprompt'] = gr.File(type='binary', file_types=['.zip'])
shared.gradio['model_menu'].change(load_model_wrapper, [shared.gradio['model_menu']], [shared.gradio['model_menu']], show_progress=True)
shared.gradio['preset_menu'].change(load_preset_values, [shared.gradio['preset_menu']], [shared.gradio[k] for k in ['preset_menu_mirror', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping']])
shared.gradio['preset_menu_mirror'].change(load_preset_values, [shared.gradio['preset_menu_mirror']], [shared.gradio[k] for k in ['preset_menu', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping']])
shared.gradio['lora_menu'].change(load_lora_wrapper, [shared.gradio['lora_menu']], [shared.gradio['lora_menu'], shared.gradio['textbox']], show_progress=True)
shared.gradio['softprompts_menu'].change(load_soft_prompt, [shared.gradio['softprompts_menu']], [shared.gradio['softprompts_menu']], show_progress=True)
shared.gradio['upload_softprompt'].upload(upload_soft_prompt, [shared.gradio['upload_softprompt']], [shared.gradio['softprompts_menu']])
def set_interface_arguments(interface_mode, extensions, cmd_active):
modes = ["default", "notebook", "chat", "cai_chat"]
cmd_list = vars(shared.args)
cmd_list = [k for k in cmd_list if type(cmd_list[k]) is bool and k not in modes]
shared.args.extensions = extensions
for k in modes[1:]:
exec(f"shared.args.{k} = False")
if interface_mode != "default":
exec(f"shared.args.{interface_mode} = True")
for k in cmd_list:
exec(f"shared.args.{k} = False")
for k in cmd_active:
exec(f"shared.args.{k} = True")
shared.need_restart = True
available_models = get_available_models()
available_presets = get_available_presets()
available_characters = get_available_characters()
available_softprompts = get_available_softprompts()
available_loras = get_available_loras()
# Default extensions
extensions_module.available_extensions = get_available_extensions()
if shared.args.chat or shared.args.cai_chat:
for extension in shared.settings['chat_default_extensions']:
shared.args.extensions = shared.args.extensions or []
if extension not in shared.args.extensions:
shared.args.extensions.append(extension)
else:
for extension in shared.settings['default_extensions']:
shared.args.extensions = shared.args.extensions or []
if extension not in shared.args.extensions:
shared.args.extensions.append(extension)
# Default model
if shared.args.model is not None:
shared.model_name = shared.args.model
else:
if len(available_models) == 0:
print('No models are available! Please download at least one.')
sys.exit(0)
elif len(available_models) == 1:
i = 0
else:
print('The following models are available:\n')
for i, model in enumerate(available_models):
print(f'{i+1}. {model}')
print(f'\nWhich one do you want to load? 1-{len(available_models)}\n')
i = int(input())-1
print()
shared.model_name = available_models[i]
shared.model, shared.tokenizer = load_model(shared.model_name)
if shared.args.lora:
add_lora_to_model(shared.args.lora)
# Default UI settings
default_preset = shared.settings['presets'][next((k for k in shared.settings['presets'] if re.match(k.lower(), shared.model_name.lower())), 'default')]
default_text = shared.settings['lora_prompts'][next((k for k in shared.settings['lora_prompts'] if re.match(k.lower(), shared.lora_name.lower())), 'default')]
if default_text == '':
default_text = shared.settings['prompts'][next((k for k in shared.settings['prompts'] if re.match(k.lower(), shared.model_name.lower())), 'default')]
title ='Text generation web UI'
description = '\n\n# Text generation lab\nGenerate text using Large Language Models.\n'
suffix = '_pygmalion' if 'pygmalion' in shared.model_name.lower() else ''
def create_interface():
gen_events = []
if shared.args.extensions is not None and len(shared.args.extensions) > 0:
extensions_module.load_extensions()
with gr.Blocks(css=ui.css if not any((shared.args.chat, shared.args.cai_chat)) else ui.css+ui.chat_css, analytics_enabled=False, title=title) as shared.gradio['interface']:
if shared.args.chat or shared.args.cai_chat:
with gr.Tab("Text generation", elem_id="main"):
if shared.args.cai_chat:
shared.gradio['display'] = gr.HTML(value=generate_chat_html(shared.history['visible'], shared.settings[f'name1{suffix}'], shared.settings[f'name2{suffix}'], shared.character))
else:
shared.gradio['display'] = gr.Chatbot(value=shared.history['visible']).style(color_map=("#326efd", "#212528"))
shared.gradio['textbox'] = gr.Textbox(label='Input')
with gr.Row():
shared.gradio['Stop'] = gr.Button('Stop', elem_id="stop")
shared.gradio['Generate'] = gr.Button('Generate')
with gr.Row():
shared.gradio['Impersonate'] = gr.Button('Impersonate')
shared.gradio['Regenerate'] = gr.Button('Regenerate')
with gr.Row():
shared.gradio['Copy last reply'] = gr.Button('Copy last reply')
shared.gradio['Replace last reply'] = gr.Button('Replace last reply')
shared.gradio['Remove last'] = gr.Button('Remove last')
shared.gradio['Clear history'] = gr.Button('Clear history')
shared.gradio['Clear history-confirm'] = gr.Button('Confirm', variant="stop", visible=False)
shared.gradio['Clear history-cancel'] = gr.Button('Cancel', visible=False)
create_model_and_preset_menus()
with gr.Tab("Character", elem_id="chat-settings"):
shared.gradio['name1'] = gr.Textbox(value=shared.settings[f'name1{suffix}'], lines=1, label='Your name')
shared.gradio['name2'] = gr.Textbox(value=shared.settings[f'name2{suffix}'], lines=1, label='Bot\'s name')
shared.gradio['context'] = gr.Textbox(value=shared.settings[f'context{suffix}'], lines=5, label='Context')
with gr.Row():
shared.gradio['character_menu'] = gr.Dropdown(choices=available_characters, value='None', label='Character', elem_id='character-menu')
ui.create_refresh_button(shared.gradio['character_menu'], lambda : None, lambda : {'choices': get_available_characters()}, 'refresh-button')
with gr.Row():
with gr.Tab('Chat history'):
with gr.Row():
with gr.Column():
gr.Markdown('Upload')
shared.gradio['upload_chat_history'] = gr.File(type='binary', file_types=['.json', '.txt'])
with gr.Column():
gr.Markdown('Download')
shared.gradio['download'] = gr.File()
shared.gradio['download_button'] = gr.Button(value='Click me')
with gr.Tab('Upload character'):
with gr.Row():
with gr.Column():
gr.Markdown('1. Select the JSON file')
shared.gradio['upload_json'] = gr.File(type='binary', file_types=['.json'])
with gr.Column():
gr.Markdown('2. Select your character\'s profile picture (optional)')
shared.gradio['upload_img_bot'] = gr.File(type='binary', file_types=['image'])
shared.gradio['Upload character'] = gr.Button(value='Submit')
with gr.Tab('Upload your profile picture'):
shared.gradio['upload_img_me'] = gr.File(type='binary', file_types=['image'])
with gr.Tab('Upload TavernAI Character Card'):
shared.gradio['upload_img_tavern'] = gr.File(type='binary', file_types=['image'])
with gr.Tab("Parameters", elem_id="parameters"):
with gr.Box():
gr.Markdown("Chat parameters")
with gr.Row():
with gr.Column():
shared.gradio['max_new_tokens'] = gr.Slider(minimum=shared.settings['max_new_tokens_min'], maximum=shared.settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=shared.settings['max_new_tokens'])
shared.gradio['chat_prompt_size_slider'] = gr.Slider(minimum=shared.settings['chat_prompt_size_min'], maximum=shared.settings['chat_prompt_size_max'], step=1, label='Maximum prompt size in tokens', value=shared.settings['chat_prompt_size'])
with gr.Column():
shared.gradio['chat_generation_attempts'] = gr.Slider(minimum=shared.settings['chat_generation_attempts_min'], maximum=shared.settings['chat_generation_attempts_max'], value=shared.settings['chat_generation_attempts'], step=1, label='Generation attempts (for longer replies)')
shared.gradio['check'] = gr.Checkbox(value=shared.settings[f'stop_at_newline{suffix}'], label='Stop generating at new line character?')
create_settings_menus(default_preset)
function_call = 'chat.cai_chatbot_wrapper' if shared.args.cai_chat else 'chat.chatbot_wrapper'
shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'seed', 'name1', 'name2', 'context', 'check', 'chat_prompt_size_slider', 'chat_generation_attempts']]
gen_events.append(shared.gradio['Generate'].click(eval(function_call), shared.input_params, shared.gradio['display'], show_progress=shared.args.no_stream))
gen_events.append(shared.gradio['textbox'].submit(eval(function_call), shared.input_params, shared.gradio['display'], show_progress=shared.args.no_stream))
gen_events.append(shared.gradio['Regenerate'].click(chat.regenerate_wrapper, shared.input_params, shared.gradio['display'], show_progress=shared.args.no_stream))
gen_events.append(shared.gradio['Impersonate'].click(chat.impersonate_wrapper, shared.input_params, shared.gradio['textbox'], show_progress=shared.args.no_stream))
shared.gradio['Stop'].click(chat.stop_everything_event, [], [], cancels=gen_events, queue=False)
shared.gradio['Copy last reply'].click(chat.send_last_reply_to_input, [], shared.gradio['textbox'], show_progress=shared.args.no_stream)
shared.gradio['Replace last reply'].click(chat.replace_last_reply, [shared.gradio['textbox'], shared.gradio['name1'], shared.gradio['name2']], shared.gradio['display'], show_progress=shared.args.no_stream)
# Clear history with confirmation
clear_arr = [shared.gradio[k] for k in ['Clear history-confirm', 'Clear history', 'Clear history-cancel']]
shared.gradio['Clear history'].click(lambda :[gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)], None, clear_arr)
shared.gradio['Clear history-confirm'].click(lambda :[gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)], None, clear_arr)
shared.gradio['Clear history-confirm'].click(chat.clear_chat_log, [shared.gradio['name1'], shared.gradio['name2']], shared.gradio['display'])
shared.gradio['Clear history-cancel'].click(lambda :[gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)], None, clear_arr)
shared.gradio['Remove last'].click(chat.remove_last_message, [shared.gradio['name1'], shared.gradio['name2']], [shared.gradio['display'], shared.gradio['textbox']], show_progress=False)
shared.gradio['download_button'].click(chat.save_history, inputs=[], outputs=[shared.gradio['download']])
shared.gradio['Upload character'].click(chat.upload_character, [shared.gradio['upload_json'], shared.gradio['upload_img_bot']], [shared.gradio['character_menu']])
# Clearing stuff and saving the history
for i in ['Generate', 'Regenerate', 'Replace last reply']:
shared.gradio[i].click(lambda x: '', shared.gradio['textbox'], shared.gradio['textbox'], show_progress=False)
shared.gradio[i].click(lambda : chat.save_history(timestamp=False), [], [], show_progress=False)
shared.gradio['Clear history-confirm'].click(lambda : chat.save_history(timestamp=False), [], [], show_progress=False)
shared.gradio['textbox'].submit(lambda x: '', shared.gradio['textbox'], shared.gradio['textbox'], show_progress=False)
shared.gradio['textbox'].submit(lambda : chat.save_history(timestamp=False), [], [], show_progress=False)
shared.gradio['character_menu'].change(chat.load_character, [shared.gradio['character_menu'], shared.gradio['name1'], shared.gradio['name2']], [shared.gradio['name2'], shared.gradio['context'], shared.gradio['display']])
shared.gradio['upload_chat_history'].upload(chat.load_history, [shared.gradio['upload_chat_history'], shared.gradio['name1'], shared.gradio['name2']], [])
shared.gradio['upload_img_tavern'].upload(chat.upload_tavern_character, [shared.gradio['upload_img_tavern'], shared.gradio['name1'], shared.gradio['name2']], [shared.gradio['character_menu']])
shared.gradio['upload_img_me'].upload(chat.upload_your_profile_picture, [shared.gradio['upload_img_me']], [])
reload_func = chat.redraw_html if shared.args.cai_chat else lambda : shared.history['visible']
reload_inputs = [shared.gradio['name1'], shared.gradio['name2']] if shared.args.cai_chat else []
shared.gradio['upload_chat_history'].upload(reload_func, reload_inputs, [shared.gradio['display']])
shared.gradio['upload_img_me'].upload(reload_func, reload_inputs, [shared.gradio['display']])
shared.gradio['Stop'].click(reload_func, reload_inputs, [shared.gradio['display']])
shared.gradio['interface'].load(None, None, None, _js=f"() => {{{ui.main_js+ui.chat_js}}}")
shared.gradio['interface'].load(lambda : chat.load_default_history(shared.settings[f'name1{suffix}'], shared.settings[f'name2{suffix}']), None, None)
shared.gradio['interface'].load(reload_func, reload_inputs, [shared.gradio['display']], show_progress=True)
elif shared.args.notebook:
with gr.Tab("Text generation", elem_id="main"):
with gr.Tab('Raw'):
shared.gradio['textbox'] = gr.Textbox(value=default_text, lines=25)
with gr.Tab('Markdown'):
shared.gradio['markdown'] = gr.Markdown()
with gr.Tab('HTML'):
shared.gradio['html'] = gr.HTML()
with gr.Row():
shared.gradio['Stop'] = gr.Button('Stop')
shared.gradio['Generate'] = gr.Button('Generate')
shared.gradio['max_new_tokens'] = gr.Slider(minimum=shared.settings['max_new_tokens_min'], maximum=shared.settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=shared.settings['max_new_tokens'])
create_model_and_preset_menus()
with gr.Tab("Parameters", elem_id="parameters"):
create_settings_menus(default_preset)
shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'seed']]
output_params = [shared.gradio[k] for k in ['textbox', 'markdown', 'html']]
gen_events.append(shared.gradio['Generate'].click(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream, api_name='textgen'))
gen_events.append(shared.gradio['textbox'].submit(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream))
shared.gradio['Stop'].click(None, None, None, cancels=gen_events)
shared.gradio['interface'].load(None, None, None, _js=f"() => {{{ui.main_js}}}")
else:
with gr.Tab("Text generation", elem_id="main"):
with gr.Row():
with gr.Column():
shared.gradio['textbox'] = gr.Textbox(value=default_text, lines=15, label='Input')
shared.gradio['max_new_tokens'] = gr.Slider(minimum=shared.settings['max_new_tokens_min'], maximum=shared.settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=shared.settings['max_new_tokens'])
shared.gradio['Generate'] = gr.Button('Generate')
with gr.Row():
with gr.Column():
shared.gradio['Continue'] = gr.Button('Continue')
with gr.Column():
shared.gradio['Stop'] = gr.Button('Stop')
create_model_and_preset_menus()
with gr.Column():
with gr.Tab('Raw'):
shared.gradio['output_textbox'] = gr.Textbox(lines=25, label='Output')
with gr.Tab('Markdown'):
shared.gradio['markdown'] = gr.Markdown()
with gr.Tab('HTML'):
shared.gradio['html'] = gr.HTML()
with gr.Tab("Parameters", elem_id="parameters"):
create_settings_menus(default_preset)
shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'seed']]
output_params = [shared.gradio[k] for k in ['output_textbox', 'markdown', 'html']]
gen_events.append(shared.gradio['Generate'].click(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream, api_name='textgen'))
gen_events.append(shared.gradio['textbox'].submit(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream))
gen_events.append(shared.gradio['Continue'].click(generate_reply, [shared.gradio['output_textbox']] + shared.input_params[1:], output_params, show_progress=shared.args.no_stream))
shared.gradio['Stop'].click(None, None, None, cancels=gen_events)
shared.gradio['interface'].load(None, None, None, _js=f"() => {{{ui.main_js}}}")
with gr.Tab("Interface mode", elem_id="interface-mode"):
modes = ["default", "notebook", "chat", "cai_chat"]
current_mode = "default"
for mode in modes[1:]:
if eval(f"shared.args.{mode}"):
current_mode = mode
break
cmd_list = vars(shared.args)
cmd_list = [k for k in cmd_list if type(cmd_list[k]) is bool and k not in modes]
active_cmd_list = [k for k in cmd_list if vars(shared.args)[k]]
gr.Markdown("*Experimental*")
shared.gradio['interface_modes_menu'] = gr.Dropdown(choices=modes, value=current_mode, label="Mode")
shared.gradio['extensions_menu'] = gr.CheckboxGroup(choices=get_available_extensions(), value=shared.args.extensions, label="Available extensions")
shared.gradio['cmd_arguments_menu'] = gr.CheckboxGroup(choices=cmd_list, value=active_cmd_list, label="Boolean command-line flags")
shared.gradio['reset_interface'] = gr.Button("Apply and restart the interface", type="primary")
shared.gradio['reset_interface'].click(set_interface_arguments, [shared.gradio[k] for k in ['interface_modes_menu', 'extensions_menu', 'cmd_arguments_menu']], None)
shared.gradio['reset_interface'].click(lambda : None, None, None, _js='() => {document.body.innerHTML=\'<h1 style="font-family:monospace;margin-top:20%;color:lightgray;text-align:center;">Reloading...</h1>\'; setTimeout(function(){location.reload()},2500)}')
if shared.args.extensions is not None:
extensions_module.create_extensions_block()
# Launch the interface
shared.gradio['interface'].queue()
if shared.args.listen:
shared.gradio['interface'].launch(prevent_thread_lock=True, share=shared.args.share, server_name='0.0.0.0', server_port=shared.args.listen_port, inbrowser=shared.args.auto_launch)
else:
shared.gradio['interface'].launch(prevent_thread_lock=True, share=shared.args.share, server_port=shared.args.listen_port, inbrowser=shared.args.auto_launch)
create_interface()
while True:
time.sleep(0.5)
if shared.need_restart:
shared.need_restart = False
shared.gradio['interface'].close()
create_interface()