forked from facebookresearch/fairseq
-
Notifications
You must be signed in to change notification settings - Fork 1
/
test_roberta.py
314 lines (271 loc) · 9.86 KB
/
test_roberta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import functools
import unittest
from typing import Any, Dict, Sequence
import fairseq
import fairseq.options
import fairseq.tasks
import torch
from tests.utils import dummy_dictionary
VOCAB_SIZE = 100
@fairseq.tasks.register_task("fake_task")
class FakeTask(fairseq.tasks.LegacyFairseqTask):
def __init__(self, args):
super().__init__(args)
self.dictionary = dummy_dictionary(VOCAB_SIZE - 4)
assert len(self.dictionary) == VOCAB_SIZE
@property
def source_dictionary(self):
return self.dictionary
@property
def target_dictionary(self):
return self.dictionary
@functools.lru_cache()
def get_toy_model(
device: str,
architecture: str = "roberta_enc_dec",
**extra_args: Any,
):
assert device in ("gpu", "cpu")
kwargs = {
"arch": architecture,
# Use characteristics dimensions
"encoder_layers": 3,
"encoder_embed_dim": 12,
"encoder_ffn_embed_dim": 14,
"encoder_attention_heads": 4,
"decoder_layers": 3,
"decoder_embed_dim": 12,
"decoder_ffn_embed_dim": 14,
"decoder_attention_heads": 4,
# Disable dropout so we have comparable tests.
"dropout": 0,
"attention_dropout": 0,
"activation_dropout": 0,
"encoder_layerdrop": 0,
# required args
"tokens_per_sample": 256,
"data": "/tmp/test_roberta",
}
kwargs.update(extra_args)
fake_task = FakeTask(kwargs)
args = fairseq.options.get_args(
task="online_backtranslation",
mono_langs="en,ro",
valid_lang_pairs="en-ro",
**kwargs,
)
torch.manual_seed(0)
model = fake_task.build_model(args)
if device == "gpu":
model.cuda()
return fake_task, model
def mk_sample(
lang: str, device: str, tok: Sequence[int] = None, batch_size: int = 2
) -> Dict[str, Any]:
assert device in ("gpu", "cpu")
if not tok:
if lang == "en":
tok = [10, 11, 12, 13, 14, 15, 2]
else:
tok = [20, 21, 22, 23, 24, 25, 26, 27, 2]
batch = torch.stack([torch.tensor(tok, dtype=torch.long)] * batch_size)
if device == "gpu":
batch = batch.cuda()
sample = {
"net_input": {
"src_tokens": batch,
"prev_output_tokens": batch,
"src_lengths": torch.tensor(
[len(tok)] * batch_size, dtype=torch.long, device=batch.device
),
},
"target": batch[:, 1:],
}
return sample
def cpu_gpu(fn):
def helper(self):
fn(self, "cpu")
if torch.cuda.is_available():
fn(self, "gpu")
return helper
def architectures(fn):
def helper(self):
for arch in ["roberta_enc_dec", "transformer"]:
fn(self, arch)
return helper
class RobertaTest(unittest.TestCase):
def assertTensorEqual(self, t1, t2, delta: float = 1e-6):
self.assertEqual(t1.size(), t2.size(), "size mismatch")
if delta == 0.0:
self.assertEqual(t1.ne(t2).long().sum(), 0)
else:
self.assertEqual(((t2 - t1).abs() > delta).long().sum(), 0)
def assertSharing(self, model, link_groups: Sequence[Sequence[str]]):
ids = {}
for group in link_groups:
group_ids = {name: id(params(model, name)) for name in group}
shared_id = group_ids[group[0]]
self.assertEqual(group_ids, {name: shared_id for name in group})
self.assertNotIn(shared_id, ids)
ids[shared_id] = group
def test_roberta_shared_params(self):
_, roberta = get_toy_model("cpu", architecture="roberta")
self.assertSharing(
roberta,
[
[
"encoder.sentence_encoder.embed_tokens.weight",
"encoder.lm_head.weight",
]
],
)
_, roberta = get_toy_model(
"cpu", architecture="roberta", untie_weights_roberta=True
)
self.assertSharing(
roberta,
[
["encoder.sentence_encoder.embed_tokens.weight"],
["encoder.lm_head.weight"],
],
)
def test_roberta_enc_dec_shared_params(self):
# 3 distinct embeddings
_, enc_dec = get_toy_model("cpu", architecture="roberta_enc_dec")
self.assertSharing(
enc_dec,
[
["encoder.embed_tokens.weight"],
["decoder.embed_tokens.weight"],
["decoder.output_projection.weight"],
],
)
# 2 distinct embeddings, one for encoder, one for decoder
_, enc_dec = get_toy_model(
"cpu", architecture="roberta_enc_dec", share_decoder_input_output_embed=True
)
self.assertSharing(
enc_dec,
[
["encoder.embed_tokens.weight"],
[
"decoder.embed_tokens.weight",
"decoder.output_projection.weight",
],
],
)
# shared embeddings
_, enc_dec = get_toy_model(
"cpu", architecture="roberta_enc_dec", share_all_embeddings=True
)
self.assertSharing(
enc_dec,
[
[
"encoder.embed_tokens.weight",
"decoder.embed_tokens.weight",
"decoder.output_projection.weight",
]
],
)
def test_roberta_max_positions_is_correctly_set(self):
device = "cpu"
task, model = get_toy_model(device)
max_pos = model.max_decoder_positions()
self.assertEqual(max_pos, 256)
self.assertEqual(max_pos, model.decoder.max_positions())
self.assertEqual(max_pos, model.encoder.max_positions())
self.assertEqual(max_pos, model.encoder.embed_positions.max_positions)
sentence = [31 for _ in range(max_pos)]
sample = mk_sample("en", device, sentence, batch_size=1)
self.assertEqual(list(sample["net_input"]["src_lengths"]), [max_pos])
self.assertEqual(len(sample["net_input"]["src_tokens"][0]), max_pos)
x, _ = model.forward(**sample["net_input"])
self.assertEqual(x.shape, (1, max_pos, VOCAB_SIZE))
@cpu_gpu
def test_roberta_forward_backward(self, device: str):
_, model = get_toy_model(device)
sample = mk_sample("en", device)
en_tokens = sample["net_input"]["src_tokens"]
(bs, l) = en_tokens.shape
# Forward
logits, _ = model(**sample["net_input"])
self.assertEqual(logits.shape, (bs, l, VOCAB_SIZE))
# Backward
loss = logits.sum()
loss.backward()
@cpu_gpu
def test_roberta_forward_backward_bs1(self, device: str):
_, model = get_toy_model(device)
sample = mk_sample("en", device, batch_size=1)
o, _ = model.forward(**sample["net_input"])
loss = o.sum()
sample2 = mk_sample("ro", device, batch_size=1)
o, _ = model.forward(**sample2["net_input"])
loss += o.sum()
loss.backward()
@cpu_gpu
def test_roberta_batching(self, device: str):
"""
Checks that the batch of size 2 give twice the same results than the batch of size 1.
"""
_, model = get_toy_model(device)
sample = mk_sample("en", device, batch_size=1)
slen = sample["net_input"]["src_lengths"][0]
sample2 = mk_sample("en", device, batch_size=2)
with torch.no_grad():
z = model.encoder.forward(
sample["net_input"]["src_tokens"], sample["net_input"]["src_lengths"]
)
z = z["encoder_out"][-1]
logits, _ = model.forward(**sample["net_input"])
z2 = model.encoder.forward(
sample2["net_input"]["src_tokens"], sample["net_input"]["src_lengths"]
)
z2 = z2["encoder_out"][-1]
logits2, _ = model.forward(**sample2["net_input"])
self.assertEqual(z.shape, (slen, 1, 12))
self.assertEqual(z2.shape, (slen, 2, 12))
self.assertTensorEqual(logits2[0], logits2[1])
self.assertTensorEqual(logits[0], logits2[0])
@cpu_gpu
def test_roberta_incremental_decoder(self, device: str):
"""
Checks that incremental decoding yields the same result than non incremental one.
"""
task, model = get_toy_model(device)
en_sample = mk_sample("en", device)
en_tokens = en_sample["net_input"]["src_tokens"]
ro_sample = mk_sample("ro", device)
ro_tokens = ro_sample["net_input"]["src_tokens"]
en_enc = model.encoder.forward(
en_tokens, src_lengths=en_sample["net_input"]["src_lengths"]
)
(bs, tgt_len) = ro_tokens.shape
# Decode without incremental state
ro_dec, _ = model.decoder.forward(ro_tokens, encoder_out=en_enc)
self.assertEqual(ro_dec.shape, (bs, tgt_len, VOCAB_SIZE))
self.assertTensorEqual(ro_dec[0], ro_dec[1])
# Decode with incremental state
inc_state = {}
ro_dec_inc = []
for l in range(tgt_len):
ro, _ = model.decoder.forward(
ro_tokens[:, : l + 1], encoder_out=en_enc, incremental_state=inc_state
)
self.assertEqual(ro.shape, (bs, 1, VOCAB_SIZE))
ro_dec_inc.append(ro)
for l in range(tgt_len):
# Intra-batch
self.assertTensorEqual(ro_dec_inc[l][0], ro_dec_inc[l][1])
# Incremental vs non-incremental
self.assertTensorEqual(ro_dec_inc[l][:, 0], ro_dec[:, l])
def params(model, name):
if "." not in name:
return getattr(model, name)
prefix, name = name.split(".", 1)
return params(getattr(model, prefix), name)