Skip to content

Latest commit

 

History

History
2159 lines (1745 loc) · 93.6 KB

installation-usage.md

File metadata and controls

2159 lines (1745 loc) · 93.6 KB

Installation and Usage

Features

The feature scope of the security-profiles-operator is right now limited to:

  • Adds a SeccompProfile CRD (alpha) to store seccomp profiles.
  • Adds a ProfileBinding CRD (alpha) to bind security profiles to pods.
  • Adds a ProfileRecording CRD (alpha) to record security profiles from workloads.
  • Synchronize seccomp profiles across all worker nodes.
  • Validates if a node supports seccomp and do not synchronize if not.
  • Providing metrics endpoints
  • Providing a Command Line Interface spoc for use cases not including Kubernetes.

Architecture

Architecture

Tutorials and Demos

Install operator

The operator container image consists of an image manifest which supports the architectures amd64 and arm64 for now. To deploy the operator, first install cert-manager via kubectl, if you're not running on OpenShift:

$ kubectl apply -f https://github.com/cert-manager/cert-manager/releases/download/v1.16.1/cert-manager.yaml
$ kubectl --namespace cert-manager wait --for condition=ready pod -l app.kubernetes.io/instance=cert-manager

OpenShift ships it's own CA injector which means we can skip installing cert-manager. After this step, apply the operator manifest:

$ kubectl apply -f https://raw.githubusercontent.com/kubernetes-sigs/security-profiles-operator/main/deploy/operator.yaml

Installation using OLM from operatorhub.io

It is also possible to install packages from operatorhub.io using OLM.

OpenShift

To be able to use the OperatorHub.io resources in OpenShift, create a new CatalogResource like this:

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
  name: operatorhubio
  namespace: openshift-marketplace
spec:
  displayName: Community Operators
  image: quay.io/operator-framework/upstream-community-operators:latest
  publisher: OperatorHub.io
  sourceType: grpc

After that, the Security Profiles Operator should then be installable via OperatorHub.

openshift installation

Other Kubernetes distributions

To install SPO, first make sure that OLM itself is installed. Then install SPO using the provided manifest:

$ kubectl apply -f https://raw.githubusercontent.com/kubernetes-sigs/security-profiles-operator/main/examples/olm/operatorhub-io.yaml

SPO would be then installed in the security-profiles-operator namespace. To troubleshoot the installation, check the state of the Subscription, CSV and InstallPlan objects in the security-profiles-operator namespace:

$ kubectl get ip,csv,sub -nsecurity-profiles-operator

Installation using OLM using upstream catalog and bundle

The SPO upstream also creates bundles and catalogs for both released versions and after every commit to the main branch. Provided that your cluster uses OLM (see above) you can install SPO using:

$ kubectl apply -f https://raw.githubusercontent.com/kubernetes-sigs/security-profiles-operator/main/examples/olm/install-resources.yaml

Note that on OpenShift, the OLM catalogs are deployed into the openshift-marketplace namespace, so you'd need to replace the namespaces before deploying:

manifest=https://raw.githubusercontent.com/kubernetes-sigs/security-profiles-operator/main/examples/olm/install-resources.yaml
$ curl $manifest | sed "s#olm#openshift-marketplace#g" | oc apply -f -

Installation using helm

A helm chart is also available for installation. The chart is attached to each GitHub release as an artifact, and can be installed by executing the following shell commands:

You may also specify a different target namespace with --namespace mynamespace or --namespace mynamespace --create-namespace if it still doesn't exist.

# Install cert-manager if it is not already installed (TODO: The helm
# chart might do this one day - see issue 1062 for details):
kubectl apply -f https://github.com/cert-manager/cert-manager/releases/download/v1.16.1/cert-manager.yaml
kubectl --namespace cert-manager wait --for condition=ready pod -l app.kubernetes.io/instance=cert-manager

# Create the namespace beforehand
export spo_ns=security-profiles-operator
kubectl create ns $spo_ns

# Label and annotate the ns to make it manageable by helm. Ensure it is
# running on the privileged Pod Security Standard.
kubectl label ns $spo_ns \
  app=security-profiles-operator \
  pod-security.kubernetes.io/audit=privileged \
  pod-security.kubernetes.io/enforce=privileged \
  pod-security.kubernetes.io/warn=privileged \
  app.kubernetes.io/managed-by=Helm \
  --overwrite=true

kubectl annotate ns $spo_ns \
  "meta.helm.sh/release-name"="security-profiles-operator" \
  "meta.helm.sh/release-namespace"="$spo_ns" \
  --overwrite

# Install the chart from the release URL (or a file path if desired)
helm install security-profiles-operator --namespace security-profiles-operator https://github.com/kubernetes-sigs/security-profiles-operator/releases/download/v0.7.1/security-profiles-operator-0.7.1.tgz
# Or update it with
# helm upgrade --install security-profiles-operator --namespace security-profiles-operator https://github.com/kubernetes-sigs/security-profiles-operator/releases/download/v0.7.1/security-profiles-operator-0.7.1.tgz

Troubleshooting and maintenance

These CRDs are not templated, but will be installed by default when running a helm install for the chart. There is no support at this time for upgrading or deleting CRDs using Helm. [docs]

To remove everything or to do a new installation from scratch be sure to remove them first.

# Check in which ns is your release
helm list --all --all-namespaces

# Set here the target namespace to clean
export spo_ns=spo

# WARNING: following command will DELETE every CRD related to this project
kubectl get crds --no-headers |grep security-profiles-operator |cut -d' ' -f1 |xargs kubectl delete crd
kubectl get -n $spo_ns crds --no-headers |grep security-profiles-operator |cut -d' ' -f1 |xargs kubectl delete -n $spo_ns crd

# Uninstall the chart release from the namespace
helm uninstall --namespace $spo_ns security-profiles-operator
# WARNING: Delete the namespace
kubectl delete ns $spo_ns

# Install it again
helm upgrade --install --create-namespace --namespace $spo_ns security-profiles-operator deploy/helm/

Installation on AKS

In case you installed SPO on an AKS cluster, it is recommended to configure webhook to respect the control-plane label as follows:

$ kubectl -nsecurity-profiles-operator patch spod spod  --type=merge \
    -p='{"spec":{"webhookOptions":[{"name":"binding.spo.io","namespaceSelector":{"matchExpressions":[{"key":"control-plane","operator":"DoesNotExist"}]}},{"name":"recording.spo.io","namespaceSelector":{"matchExpressions":[{"key":"control-plane","operator":"DoesNotExist"}]}}]}}'

Afterwards, validate spod has been patched successfully by ensuring the RUNNING state:

$ kubectl -nsecurity-profiles-operator get spod spod
NAME   STATE
spod   RUNNING

Configure a custom kubelet root directory

You can configure a custom kubelet root directory in case your cluster is not using the default /var/lib/kubelet path. You can achieve this by setting the environment variable KUBELET_DIR in the operator deployment. This environment variable will be then set in the manager container as well as it will be propagated into the containers part of spod daemonset.

Furthermore, you can configure a custom kubelet root directory for each node or a pool of worker nodes inside the cluster. This can be achieved by applying the following label on each node object which has a custom path:

kubelet.kubernetes.io/directory-location: mnt-resource-kubelet

Where the value of the label is the kubelet root directory path, by replacing / with -. For example the value above is translated by the operator from mnt-resource-kubelet into path /mnt/resource/kubelet.

Set a custom priority class name for spod daemon pod

The default priority class name of the spod daemon pod is set to system-node-critical. A custom priority class name can be configured in the SPOD configuration by setting a value in the priorityClassName filed.

> kubectl -n security-profiles-operator patch spod spod --type=merge -p '{"spec":{"priorityClassName":"my-priority-class"}}'
securityprofilesoperatordaemon.security-profiles-operator.x-k8s.io/spod patched

This is useful in situations when the spod daemon pod remains in Pending state, because there isn't enough capacity on the related node to be scheduled.

Set logging verbosity

The operator supports the default logging verbosity of 0 and an enhanced 1. To switch to the enhanced logging verbosity, patch the spod config by adjusting the value:

> kubectl -n security-profiles-operator patch spod spod --type=merge -p '{"spec":{"verbosity":1}}'
securityprofilesoperatordaemon.security-profiles-operator.x-k8s.io/spod patched

The daemon should now indicate that it's using the new logging verbosity:

> k logs --selector name=spod security-profiles-operator | head -n1
I1111 15:13:16.942837       1 main.go:182]  "msg"="Set logging verbosity to 1"

Pull images from private registry

The container images from spod pod can be pulled from a private registry. This can be achieved by defining the imagePullSecrets inside of the SPOD configuration.

Configure the SELinux type

The operator uses by default the spc_t SELinux type in the security context of the daemon pod. This can be easily changed to a different SELinux type by patching the spod config as follows:

> kubectl -n security-profiles-operator patch spod spod --type=merge -p '{"spec":{"selinuxTypeTag":"unconfined_t"}}'
securityprofilesoperatordaemon.security-profiles-operator.x-k8s.io/spod patched

The ds/spod should now be updated by the manager with the new SELinux type, and all daemon pods recreated:

 kubectl get ds spod -o yaml | grep unconfined_t -B2
          runAsUser: 65535
          seLinuxOptions:
            type: unconfined_t
--
          runAsUser: 0
          seLinuxOptions:
            type: unconfined_t
--
          runAsUser: 0
          seLinuxOptions:
            type: unconfined_t

Customise the daemon resource requirements

The default resource requirements of the daemon container can be adjusted by using the field daemonResourceRequirements from the SPOD configuration as follows:

kubectl -n security-profiles-operator patch spod spod --type merge -p
'{"spec":{"daemonResourceRequirements": {"requests": {"memory": "256Mi", "cpu": "250m"}, "limits": {"memory": "512Mi", "cpu": "500m"}}}}'

These values can also be specified via the Helm chart.

Restrict the allowed syscalls in seccomp profiles

The operator doesn't restrict by default the allowed syscalls in the seccomp profiles. This means that any syscall can be allowed in a seccomp profile installed via the operator. This can be changed by defining the list of allowed syscalls in the spod configuration as follows:

kubectl -n security-profiles-operator patch spod spod --type merge -p
'{"spec":{"allowedSyscalls": ["exit", "exit_group", "futex", "nanosleep"]}}'

From now on, the operator will only install the seccomp profiles which have only a subset of syscalls defined into the allowed list. All profiles not complying with this rule, it will be rejected.

Also every time when the list of allowed syscalls is modified in the spod configuration, the operator will automatically identify the already installed profiles which are not compliant and remove them.

Constrain spod scheduling

You can constrain the spod scheduling via the spod configuration by setting either the tolerations or affinity.

kubectl -n security-profiles-operator patch spod spod --type merge -p
'{"spec":{"tolerations": [{...}]}}'
kubectl -n security-profiles-operator patch spod spod --type merge -p
'{"spec":{"affinity": {...}}}'

These settings are also available in the Helm chart.

Enable memory optimization in spod

The controller running inside of spod daemon process is watching all pods available in the cluster when profile recording is enabled. It will perform some pre-filtering before the reconciliation to select only the pods running on local node as well as pods annotated for recording, but this operation takes place after all pods objects are loaded into the cache memory of the informer. This can lead to very high memory usage in large clusters with 1000s of pods, resulting in spod daemon running out of memory or crashing.

In order to prevent this situation, the spod daemon can be configured to only load into the cache memory the pods explicitly labeled for profile recording. This can be achieved by enabling memory optimization as follows:

kubectl -n security-profiles-operator patch spod spod --type=merge -p '{"spec":{"enableMemoryOptimization":true}}'

If you want now to record a security profile for a pod, this pod needs to be explicitly labeled with spo.x-k8s.io/enable-recording, as follows:

apiVersion: v1
kind: Pod
metadata:
  name: my-recording-pod
  labels:
    spo.x-k8s.io/enable-recording: "true"

Create a seccomp profile

Use the SeccompProfile kind to create profiles. Example:

apiVersion: security-profiles-operator.x-k8s.io/v1beta1
kind: SeccompProfile
metadata:
  namespace: my-namespace
  name: profile1
spec:
  defaultAction: SCMP_ACT_LOG

This seccomp profile will be saved at the path:

/var/lib/kubelet/seccomp/operator/my-namespace/profile1.json.

An init container will set up the root directory of the operator to be able to run it without root G/UID. This will be done by creating a symlink from the rootless profile storage /var/lib/security-profiles-operator to the default seccomp root path inside of the kubelet root /var/lib/kubelet/seccomp/operator.

Apply a seccomp profile to a pod

Create a pod using one of the created profiles. On Kubernetes >= 1.19, the profile can be specified as part of the pod's security context:

apiVersion: v1
kind: Pod
metadata:
  name: test-pod
spec:
  securityContext:
    seccompProfile:
      type: Localhost
      localhostProfile: operator/my-namespace/profile1.json
  containers:
    - name: test-container
      image: nginx

Prior to Kubernetes 1.19, the seccomp profile is controlled by an annotation:

apiVersion: v1
kind: Pod
metadata:
  name: test-pod
  annotations:
    seccomp.security.alpha.kubernetes.io/pod: "localhost/operator/my-namespace/profile1.json"
spec:
  containers:
    - name: test-container
      image: nginx

You can find the profile path of the seccomp profile by checking the seccompProfile.localhostProfile attribute (remember to use the wide output mode):

$ kubectl --namespace my-namespace get seccompprofile profile1 --output wide
NAME       STATUS   AGE   SECCOMPPROFILE.LOCALHOSTPROFILE
profile1   Active   14s   operator/my-namespace/profile1.json

You can apply the profile to an existing application, such as a Deployment or DaemonSet:

kubectl --namespace my-namespace patch deployment myapp --patch '{"spec": {"template": {"spec": {"securityContext": {"seccompProfile": {"type": "Localhost", "localhostProfile": "'$(kubectl --namespace my-namespace get seccompprofile profile1 --output=jsonpath='{.status.seccompProfile\.localhostProfile}')'}}}}}}'
deployment.apps/myapp patched

The pods in the Deployment will be automatically restarted. Check that the profile was applied correctly:

$ kubectl --namespace my-namespace get deployment myapp --output=jsonpath='{.spec.template.spec.securityContext}' | jq .
{
  "seccompProfile": {
    "localhostProfile": "operator/my-namespace/profile1.json",
    "type": "Localhost"
  }
}

Note that a security profile that is in use by existing pods cannot be deleted unless the pods exit or are removed - the profile deletion is protected by finalizers.

Base syscalls for a container runtime

An example of the minimum required syscalls for a runtime such as runc (tested on version 1.0.0) to launch a container can be found in the examples. You can use this example as a starting point for creating custom profiles for your application. You can also programmatically combine it with your custom profiles in order to build application-specific profiles that only specify syscalls that are required on top of the base calls needed for the container runtime. For example:

apiVersion: security-profiles-operator.x-k8s.io/v1beta1
kind: SeccompProfile
metadata:
  namespace: my-namespace
  name: profile1
spec:
  defaultAction: SCMP_ACT_ERRNO
  baseProfileName: runc-v1.2.2
  syscalls:
    - action: SCMP_ACT_ALLOW
      names:
        - exit_group

If you're not using runc but the alternative crun, then you can do the same by using the corresponding example profile (tested with version 0.20.1).

OCI Artifact support for base profiles

The operator supports pulling base profiles from container registries supporting OCI artifacts, which are right now:

To use that feature, just prefix the baseProfileName with oci://, like:

apiVersion: security-profiles-operator.x-k8s.io/v1beta1
kind: SeccompProfile
metadata:
  namespace: my-namespace
  name: profile1
spec:
  defaultAction: SCMP_ACT_ERRNO
  baseProfileName: oci://ghcr.io/security-profiles/runc:v1.2.2

The resulting profile profile1 will then contain all base syscalls from the remote runc profile. It is also possible to reference the base profile by its SHA256, like oci://ghcr.io/security-profiles/runc@sha256:380…. Please note that all profiles must be signed using sigstore (cosign) signatures, otherwise the Security Profiles Operator will reject them. The OCI artifact profiles also support different architectures, where the operator always tries to select the correct one via runtime.GOOS/runtime.GOARCH but also allows to fallback to a default profile.

The operator internally caches pulled artifacts up to 24 hours for 1000 profiles, means that they will be refreshed after that time period, if the stack is full or the operator daemon gets restarted. It is also possible to define additional baseProfileName for existing base profiles, so the operator will recursively resolve them up to a level of 15 stacked profiles.

Because the resulting syscalls may hidden to the user, we additionally annotate the seccomp profile with the final results:

> kubectl describe seccompprofile profile1
Name:         profile1
Namespace:    security-profiles-operator
Labels:       spo.x-k8s.io/profile-id=SeccompProfile-profile1
Annotations:  syscalls:
                [{"names":["arch_prctl","brk","capget","capset","chdir","clone","close","dup3","epoll_create1","epoll_ctl","epoll_pwait","execve","exit_gr...
API Version:  security-profiles-operator.x-k8s.io/v1beta1

We provide all available base profiles as part of the "Security Profiles" GitHub organization.

Label namespaces for binding and recording

The next two sections describe how to bind a security profile to a container image and how to record a security profile from a running container. Both operations require the one of two SPO's webhooks to take action on the workload and in order for the webhooks to be able to reconcile the workload, the namespaces must be labeled appropriately.

The expected labels are spo.x-k8s.io/enable-binding for the binding webhook and spo.x-k8s.io/enable-recording for the recording webhook by default. The labels can be set with a simple kubectl label command:

$ kubectl label ns spo-test spo.x-k8s.io/enable-recording=

Note that the labels' values are not important, only their presence matters. In addition, the namespace selector is configurable and the webhook configuration is described in the configuring webhooks section.

Bind workloads to profiles with ProfileBindings

If you do not want to directly modify the SecurityContext of a Pod, for instance if you are deploying a public application, you can use the ProfileBinding resource to bind a security profile to a container's securityContext.

To bind a Pod that uses an 'nginx:1.19.1' image to the 'profile-complain' example seccomp profile, create a ProfileBinding in the same namespace as both the Pod and the SeccompProfile:

apiVersion: security-profiles-operator.x-k8s.io/v1alpha1
kind: ProfileBinding
metadata:
  name: nginx-binding
spec:
  profileRef:
    kind: SeccompProfile
    name: profile-complain
  image: nginx:1.19.1

You can enable a default profile binding by using the string "*" as the image name. This will only apply a profile binding if no other profile binding matches a container in the pod.

apiVersion: security-profiles-operator.x-k8s.io/v1alpha1
kind: ProfileBinding
metadata:
  name: nginx-binding
spec:
  profileRef:
    kind: SeccompProfile
    name: profile-complain
  image: *

If the Pod is already running, it will need to be restarted in order to pick up the profile binding. Once the binding is created and the Pod is created or recreated, the SeccompProfile should be applied to the container whose image name matches the binding:

$ kubectl get pod test-pod -o jsonpath='{.spec.containers[*].securityContext.seccompProfile}'
{"localhostProfile":"operator/default/generic/profile-complain-unsafe.json","type":"Localhost"}

Binding a SELinux profile works in the same way, except you'd use the SelinuxProfile kind. RawSelinuxProfiles are currently not supported.

Record profiles from workloads with ProfileRecordings

The operator is capable of recording seccomp, AppArmor or SELinux profiles by the usage of the built-in eBPF recorder or by evaluating the audit or syslog files. Each method has its pros and cons as well as separate technical requirements.

Note that AppArmor profiles can be recorded only by the eBPF recorder and SELinux profiles can only be recorded using the log enricher.

Log enricher based recording

When using the log enricher for recording seccomp or SELinux profiles, please ensure that the feature is enabled within the spod configuration resource. The log based recording works in the same way with [containerd][containerd] and [CRI-O][cri-o], while using the node local logs as input source of truth.

To record by using the enricher, create a ProfileRecording which is using recorder: logs:

apiVersion: security-profiles-operator.x-k8s.io/v1alpha1
kind: ProfileRecording
metadata:
  name: test-recording
spec:
  kind: SeccompProfile
  recorder: logs
  podSelector:
    matchLabels:
      app: my-app

Then we can create a workload to be recorded, for example two containers within a single pod:

apiVersion: v1
kind: Pod
metadata:
  name: my-pod
  labels:
    app: my-app
spec:
  containers:
    - name: nginx
      image: quay.io/security-profiles-operator/test-nginx:1.19.1
    - name: redis
      image: quay.io/security-profiles-operator/redis:6.2.1

If the pod is up and running:

> kubectl get pods
NAME     READY   STATUS    RESTARTS   AGE
my-pod   2/2     Running   0          18s

Then the enricher should indicate that it receives audit logs for those containers:

> kubectl -n security-profiles-operator logs --since=1m --selector name=spod -c log-enricher
…
I0705 12:08:18.729660 1843190 enricher.go:136] log-enricher "msg"="audit"  "container"="redis" "executable"="/usr/local/bin/redis-server" "namespace"="default" "node"="127.0.0.1" "pid"=1847839 "pod"="my-pod" "syscallID"=232 "syscallName"="epoll_wait" "timestamp"="1625486870.273:187492" "type"="seccomp"

Now, if we remove the pod:

> kubectl delete pod my-pod

Then the operator will reconcile two seccomp profiles:

> kubectl get sp
NAME                   STATUS      AGE
test-recording-nginx   Installed   15s
test-recording-redis   Installed   15s

Recording a SELinux profile would work the same, except you'd use kind: SelinuxProfile in the ProfileRecording object.

Please note that log based recording does not have any effect if the recorded container is privileged, that is, the container's security context sets privileged: true. This is because privileged containers are not subject to SELinux or seccomp policies at all and the log based recording makes use of a special seccomp or SELinux profile respectively to record the syscalls or SELinux events.

eBPF based recording

The operator also supports an eBPF based recorder. This recorder only supports seccomp and apparmor profiles for now. Recording via ebpf works for kernels which expose the /sys/kernel/btf/vmlinux file per default as well as a custom list of selected Linux kernels. In addition, this feature requires new library versions and thus might not be enabled. You can find out if your SPO build has the eBPF feature disabled by looking at the build tags:

> kubectl logs --selector name=security-profiles-operator | grep buildTags

If the output contains no_bpf then the feature has been disabled.

To use the recorder, enable it by patching the spod configuration:

> kubectl -n security-profiles-operator patch spod spod --type=merge -p '{"spec":{"enableBpfRecorder":true}}'
securityprofilesoperatordaemon.security-profiles-operator.x-k8s.io/spod patched

Alternatively, make sure the operator deployment sets the ENABLE_BPF_RECORDER environment variable to true. This method can be easier to set up during installation than patching the spod.

We can verify that the recorder is up and running after the spod rollout has been finished:

> kubectl -n security-profiles-operator logs --selector name=spod -c bpf-recorder
Found 6 pods, using pod/spod-h7dpm
I1115 12:02:45.991786  110307 main.go:182]  "msg"="Set logging verbosity to 0"
I1115 12:02:45.991901  110307 deleg.go:130] setup "msg"="starting component: bpf-recorder"  "buildDate"="1980-01-01T00:00:00Z" "compiler"="gc" "gitCommit"="unknown" "gitTreeState"="clean" "goVersion"="go1.16.9" "libseccomp"="2.5.1" "platform"="linux/amd64" "version"="0.4.0-dev"
I1115 12:02:45.991955  110307 bpfrecorder.go:105] bpf-recorder "msg"="Setting up caches with expiry of 1h0m0s"
I1115 12:02:45.991973  110307 bpfrecorder.go:121] bpf-recorder "msg"="Starting log-enricher on node: ip-10-0-228-234.us-east-2.compute.internal"
I1115 12:02:45.994232  110307 bpfrecorder.go:152] bpf-recorder "msg"="Connecting to metrics server"
I1115 12:02:48.373469  110307 bpfrecorder.go:168] bpf-recorder "msg"="Got system mount namespace: 4026531840"
I1115 12:02:48.373518  110307 bpfrecorder.go:170] bpf-recorder "msg"="Doing BPF load/unload self-test"
I1115 12:02:48.373529  110307 bpfrecorder.go:336] bpf-recorder "msg"="Loading bpf module"
I1115 12:02:48.373570  110307 bpfrecorder.go:403] bpf-recorder "msg"="Using system btf file"
I1115 12:02:48.373770  110307 bpfrecorder.go:356] bpf-recorder "msg"="Loading bpf object from module"
I1115 12:02:48.403766  110307 bpfrecorder.go:362] bpf-recorder "msg"="Getting bpf program sys_enter"
I1115 12:02:48.403792  110307 bpfrecorder.go:368] bpf-recorder "msg"="Attaching bpf tracepoint"
I1115 12:02:48.406205  110307 bpfrecorder.go:373] bpf-recorder "msg"="Getting syscalls map"
I1115 12:02:48.406287  110307 bpfrecorder.go:379] bpf-recorder "msg"="Getting comms map"
I1115 12:02:48.406862  110307 bpfrecorder.go:396] bpf-recorder "msg"="Module successfully loaded, watching for events"
I1115 12:02:48.406908  110307 bpfrecorder.go:677] bpf-recorder "msg"="Unloading bpf module"
I1115 12:02:48.411636  110307 bpfrecorder.go:176] bpf-recorder "msg"="Starting GRPC API server"

The recorder does a system sanity check on startup to ensure everything works as expected. This includes a load and unload of the BPF module. If this fails, please open an issue so that we can find out what went wrong.

To record seccomp profiles by using the BPF recorder, create a ProfileRecording which is using recorder: bpf:

apiVersion: security-profiles-operator.x-k8s.io/v1alpha1
kind: ProfileRecording
metadata:
  name: my-recording
spec:
  kind: SeccompProfile
  recorder: bpf
  podSelector:
    matchLabels:
      app: my-app

Then we can create a workload to be recorded, for example this one:

apiVersion: v1
kind: Pod
metadata:
  name: my-pod
  labels:
    app: my-app
spec:
  containers:
    - name: nginx
      image: quay.io/security-profiles-operator/test-nginx:1.19.1

If the pod is up and running:

> kubectl get pods
NAME     READY   STATUS    RESTARTS   AGE
my-pod   1/1     Running   0          10s

Then the BPF recorder should indicate that it found the container:

> kubectl -n security-profiles-operator logs --since=1m --selector name=spod -c bpf-recorder
…
I1115 12:12:30.029216   66106 bpfrecorder.go:654] bpf-recorder "msg"="Found container ID in cluster"  "containerID"="c2e10af47011f6a61cd7e92073db2711796f174af35b34486967588ef7f95fbc" "containerName"="nginx"
I1115 12:12:30.029264   66106 bpfrecorder.go:539] bpf-recorder "msg"="Saving PID for profile"  "mntns"=4026533352 "pid"=74384 "profile"="my-recording-nginx-1636978341"
I1115 12:12:30.029428   66106 bpfrecorder.go:512] bpf-recorder "msg"="Using short path via tracked mount namespace"  "mntns"=4026533352 "pid"=74403 "profile"="my-recording-nginx-1636978341"
I1115 12:12:30.029575   66106 bpfrecorder.go:512] bpf-recorder "msg"="Using short path via tracked mount namespace"  "mntns"=4026533352 "pid"=74402 "profile"="my-recording-nginx-1636978341"
…

Now, if we remove the pod:

> kubectl delete pod my-pod

Then the operator will reconcile the seccomp profile:

> kubectl get sp
NAME                 STATUS      AGE
my-recording-nginx   Installed   15s

Merging per-container profile instances

By default, each container instance will be recorded into a separate profile. This is mostly visible when recording pods managed by a replicating controller (Deployment, DaemonSet, etc.). A realistic example might be a workload being recorded in a test environment where the recorded Deployment consists of several replicas, only one of which is receiving the test traffic. After the recording is complete, only the container that was receiving the traffic would have container all the syscalls that were actually used.

In this case, it might be useful to merge the per-container profiles into a single profile. This can be done by setting the mergeStrategy attribute to containers in the ProfileRecording. Note that the following example uses a SeccompProfile as the kind but the same applies to SelinuxProfile as well.

apiVersion: security-profiles-operator.x-k8s.io/v1alpha1
kind: ProfileRecording
metadata:
  # The name of the Recording is the same as the resulting `SeccompProfile` CRD
  # after reconciliation.
  name: test-recording
spec:
  kind: SeccompProfile
  recorder: logs
  mergeStrategy: containers
  podSelector:
    matchLabels:
      app: sp-record

Create your workload:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: nginx-deploy
spec:
  replicas: 3
  selector:
    matchLabels:
      app: sp-record
  template:
    metadata:
      labels:
        app: sp-record
    spec:
      serviceAccountName: spo-record-sa
      containers:
        - name: nginx-record
          image: quay.io/security-profiles-operator/test-nginx-unprivileged:1.21
          ports:
            - containerPort: 8080

You'll see that the deployment spawns three replicas. To test the merging feature, you can perform an action in one of the pods, for example:

> kubectl exec nginx-deploy-65bcbb956f-gmbrj -- bash -c "mknod /tmp/foo p"

Note that this is a silly example, but shows the feature in action.

To record the individual profiles, delete the deployment:

> kubectl delete deployment nginx-deploy

The profiles will be reconciled, one per container. Note that the profiles are marked as "partial" and the spod daemon instances do not reconcile the profiles.

> kubectl get sp -lspo.x-k8s.io/recording-id=test-recording --show-labels
NAME                                STATUS    AGE     LABELS
test-recording-nginx-record-gmbrj   Partial   2m50s   spo.x-k8s.io/container-id=sp-record,spo.x-k8s.io/partial=true,spo.x-k8s.io/profile-id=SeccompProfile-test-recording-sp-record-gmbrj,spo.x-k8s.io/recording-id=test-recording
test-recording-nginx-record-lclnb   Partial   2m50s   spo.x-k8s.io/container-id=sp-record,spo.x-k8s.io/partial=true,spo.x-k8s.io/profile-id=SeccompProfile-test-recording-sp-record-lclnb,spo.x-k8s.io/recording-id=test-recording
test-recording-nginx-record-wdv2r   Partial   2m50s   spo.x-k8s.io/container-id=sp-record,spo.x-k8s.io/partial=true,spo.x-k8s.io/profile-id=SeccompProfile-test-recording-sp-record-wdv2r,spo.x-k8s.io/recording-id=test-recording

Inspecting the first partial profile, which corresponds to the pod where we ran the extra command shows that mknod is allowed:

> kubectl get sp test-recording-nginx-record-gmbrj -o yaml | grep mknod
  - mknod

On the other hand the others do not:

> kubectl get sp test-recording-nginx-record-lclnb -o yaml | grep mknod
> kubectl get sp test-recording-nginx-record-wdv2r -o yaml | grep mknod

To merge the profiles, delete the profile recording to indicate that you are finished with recording the workload. This would trigger the merge operation done by the controller and the resulting profile will be reconciled by the controller as seen from the Installed state:

> kubectl delete profilerecording test-recording
profilerecording.security-profiles-operator.x-k8s.io "test-recording" deleted
> kubectl get sp -lspo.x-k8s.io/recording-id=test-recording
NAME                          STATUS      AGE
test-recording-nginx-record   Installed   17m

The resulting profile will contain all the syscalls that were used by any of the containers, including the mknod syscall:

> kubectl get sp test-recording-nginx-record -o yaml | grep mknod
  - mknod

Recording profiles without applying them

In some cases, it might be desirable to record security profiles, but not install them. Use-cases might include recording profiles in a CI system where the profiles would be deployed in a subsequent verify run or recording profiles as part of a build process where the profile would be deployed by the end-user.

To record profiles without installing them, set the disableProfileAfterRecording attribute to true in the ProfileRecording CR. This option defaults to false, which is the default behavior of the operator to install the profiles. When disableProfileAfterRecording is set to true, the operator will not reconcile the profiles and will not install them. Partial disabled profiles can still be merged and the resulting merged profile will be disabled.

On the profile level, this functionality is controlled by the disabled flag - it is also possible to create profile CRs disabled, although this functionality is probably less interesting to end users and is mostly used for testing purposes. The disabled flag is set to false by default. Profiles that are disabled, either explicitly or by the disableProfileAfterRecording flag, can be enabled by setting the disabled flag to false in the profile CR.

Disable profile recording

Profile recorder controller along with the corresponding sidecar container is disabled when neither enableBpfRecorder nor enableLogEnricher is set in the SPOD configuration, and automatically enabled when either one of them is on. The same applies when either the BPF recorder of the log enricher are enabled using the environment variables ENABLE_BPF_RECORDER or ENABLE_LOG_ENRICHER respectively.

Also, when running the daemon in standalone mode is possible to switch on the profile recorder controller by providing the with-recording command line argument or setting the ENABLE_RECORDING environment variable.

Create a SELinux Profile

Ensure that the running daemon has SELinux enabled:

> kubectl -n security-profiles-operator patch spod spod --type=merge -p '{"spec":{"enableSelinux":"true"}}'
securityprofilesoperatordaemon.security-profiles-operator.x-k8s.io/spod patched

There are two kinds that can be used to define a SELinux profile - SelinuxProfile and RawSelinuxProfile.

The default one and the one created during workload recording is SelinuxProfile. It is more readable and has several features that allow for better security hardening and better readability. The RawSelinuxProfile kind should be used mostly when there's an already existing SELinux policy (perhaps created with udica) that you wish to use in your cluster.

In particular, the SelinuxProfile kind:

  • restricts the profiles to inherit from to the current namespace or a system-wide profile. Because there are typically many profiles installed on the system, but only a subset should be used by cluster workloads, the inheritable system profiles are listed in the spod instance in spec.selinuxOptions.allowedSystemProfiles. Depending on what distribution your nodes run, the base profile might vary, on RHEL-based systems, you might want to look at what profiles are shipped in the container-selinux RPM package.
  • performs basic validation of the permissions, classes and labels
  • adds a new keyword @self that describes the process using the policy. This allows to reuse a policy between workloads and namespaces easily, as the "usage" of the policy (see below) is based on the name and namespace.

Below is an example of a policy that can be used with a non-privileged nginx workload:

apiVersion: security-profiles-operator.x-k8s.io/v1alpha2
kind: SelinuxProfile
metadata:
  name: nginx-secure
  namespace: nginx-deploy
spec:
  allow:
    "@self":
      tcp_socket:
        - listen
    http_cache_port_t:
      tcp_socket:
        - name_bind
    node_t:
      tcp_socket:
        - node_bind
  inherit:
    - kind: System
      name: container

After the policy is created, we can wait for selinuxd to install it:

$ kubectl wait --for=condition=ready selinuxprofile nginx-secure
selinuxprofile.security-profiles-operator.x-k8s.io/nginx-secure condition met

The CIL-formatted policies are placed into an emptyDir owned by the SPO where you can view the resulting CIL policy:

$ kubectl exec -it -c selinuxd spod-fm55x -- sh
sh-4.4# cat /etc/selinux.d/nginx-secure_nginx-deploy.cil
(block nginx-secure_nginx-deploy
(blockinherit container)
(allow process nginx-secure_nginx-deploy.process ( tcp_socket ( listen )))
(allow process http_cache_port_t ( tcp_socket ( name_bind )))
(allow process node_t ( tcp_socket ( node_bind )))
)

However, the binary policies are installed into the system policy store on the nodes, so you can verify that a policy has been installed:

# semodule -l | grep nginx-secure

Apply a SELinux profile to a pod

SELinux profiles are referenced to based on their "usage" string:

kubectl get selinuxprofile.security-profiles-operator.x-k8s.io/nginx-secure -nnginx-deploy -ojsonpath='{.status.usage}'
nginx-secure_nginx-deploy.process%

Use this string in the workload manifest in the .spec.containers[].securityContext.seLinuxOptions attribute:

apiVersion: v1
kind: Pod
metadata:
  name: nginx-secure
  namespace: nginx-deploy
spec:
  containers:
    - image: nginxinc/nginx-unprivileged:1.21
      name: nginx
      securityContext:
        seLinuxOptions:
          # NOTE: This uses an appropriate SELinux type
          type: nginx-secure_nginx-deploy.process

Note that the SELinux type must exist before creating the workload.

Make a SELinux profile permissive

Similarly to how a SeccompProfile might have a default action SCMP_ACT_LOG which would merely log violations of the policy, but not actually block the container from executing, a SelinuxProfile can be marked as "permissive" by setting .spec.permissive to true. This mode might be useful e.g. when the policy is known or suspected to be incomplete and you'd prefer to just watch for subsequent AVC denials after deploying the policy.

Record a SELinux profile

Please refer to the seccomp recording documentation, recording a SELinux profile would work the same, except you'd use kind: SelinuxProfile. Note that only the log enricher is capable of recording SELinux profiles.

Restricting to a Single Namespace

The security-profiles-operator can optionally be run to watch SeccompProfiles in a single namespace. This is advantageous because it allows for tightening the RBAC permissions required by the operator's ServiceAccount. To modify the operator deployment to run in a single namespace, use the namespace-operator.yaml manifest with your namespace of choice:

Restricting to a Single Namespace with upstream deployment manifests

NAMESPACE=<your-namespace>

curl https://raw.githubusercontent.com/kubernetes-sigs/security-profiles-operator/main/deploy/namespace-operator.yaml | sed "s/NS_REPLACE/$NAMESPACE/g" | kubectl apply -f -

Restricting to a Single Namespace when installing using OLM

Since restricting the operator to a single namespace amounts to setting the RESTRICT_TO_NAMESPACE environment variable, the easiest way to set that (or any other variable for SPO) is by editing the Subscription object and setting the spec.config.env field:

spec:
  config:
    env:
      - name: RESTRICT_TO_NAMESPACE
        value: <your-namespace>

OLM would then take care of updating the operator Deployment object with the new environment variable. Please refer to the OLM documentation for more details on tuning the operator's configuration with the Subscription objects.

Using metrics

The security-profiles-operator provides two metrics endpoints, which are secured by default using the WithAuthenticationAndAuthorization feature of the controller-runtime. All metrics are exposed via the metrics service within the security-profiles-operator namespace:

> kubectl get svc/metrics -n security-profiles-operator
NAME      TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)   AGE
metrics   ClusterIP   10.0.0.228   <none>        443/TCP   43s

The operator ships a cluster role and corresponding binding spo-metrics-client to retrieve the metrics from within the cluster. There are two metrics paths available:

  • metrics.security-profiles-operator/metrics: for controller runtime metrics
  • metrics.security-profiles-operator/metrics-spod: for the operator daemon metrics

To retrieve the metrics, just query the service endpoint by using the default serviceaccount token in the security-profiles-operator namespace:

> kubectl run --rm -i --restart=Never --image=registry.fedoraproject.org/fedora-minimal:latest \
    -n security-profiles-operator metrics-test -- bash -c \
    'curl -ks -H "Authorization: Bearer $(cat /var/run/secrets/kubernetes.io/serviceaccount/token)" https://metrics.security-profiles-operator/metrics-spod'
…
# HELP security_profiles_operator_seccomp_profile_total Counter about seccomp profile operations.
# TYPE security_profiles_operator_seccomp_profile_total counter
security_profiles_operator_seccomp_profile_total{operation="delete"} 1
security_profiles_operator_seccomp_profile_total{operation="update"} 2
…

If the metrics have to be retrieved from a different namespace, just link the service account to the spo-metrics-client ClusterRoleBinding or create a new one:

> kubectl get clusterrolebinding spo-metrics-client -o wide
NAME                 ROLE                             AGE   USERS   GROUPS   SERVICEACCOUNTS
spo-metrics-client   ClusterRole/spo-metrics-client   35m                    security-profiles-operator/default

Every metrics server pod from the DaemonSet runs with the same set of certificates (secret metrics-server-cert: tls.crt and tls.key) in the security-profiles-operator namespace. This means a pod like this can be used to omit the --insecure/-k flag:

---
apiVersion: v1
kind: Pod
metadata:
  name: test-pod
spec:
  containers:
    - name: test-container
      image: registry.fedoraproject.org/fedora-minimal:latest
      command:
        - bash
        - -c
        - |
          curl -s --cacert /var/run/secrets/metrics/ca.crt \
            -H "Authorization: Bearer $(cat /var/run/secrets/kubernetes.io/serviceaccount/token)" \
            https://metrics.security-profiles-operator/metrics-spod
      volumeMounts:
        - mountPath: /var/run/secrets/metrics
          name: metrics-cert-volume
          readOnly: true
  restartPolicy: Never
  volumes:
    - name: metrics-cert-volume
      secret:
        defaultMode: 420
        secretName: metrics-server-cert

Available metrics

The controller-runtime (/metrics) as well as the DaemonSet endpoint (/metrics-spod) already provide a set of default metrics. Beside that, those additional metrics are provided by the daemon, which are always prefixed with security_profiles_operator_:

Metric Key Possible Labels Type Purpose
seccomp_profile_total operation={delete,update} Counter Amount of seccomp profile operations.
seccomp_profile_audit_total node, namespace, pod, container, executable, syscall Counter Amount of seccomp profile audit operations. Requires the log-enricher to be enabled.
seccomp_profile_bpf_total node, mount_namespace, profile Counter Amount of seccomp profile bpf operations. Requires the bpf-recorder to be enabled.
seccomp_profile_error_total reason={
SeccompNotSupportedOnNode,
InvalidSeccompProfile,
CannotSaveSeccompProfile,
CannotRemoveSeccompProfile,
CannotUpdateSeccompProfile,
CannotUpdateNodeStatus
}
Counter Amount of seccomp profile errors.
selinux_profile_total operation={delete,update} Counter Amount of selinux profile operations.
selinux_profile_audit_total node, namespace, pod, container, executable, scontext,tcontext Counter Amount of selinux profile audit operations. Requires the log-enricher to be enabled.
selinux_profile_error_total reason={
CannotSaveSelinuxPolicy,
CannotUpdatePolicyStatus,
CannotRemoveSelinuxPolicy,
CannotContactSelinuxd,
CannotWritePolicyFile,
CannotGetPolicyStatus
}
Counter Amount of selinux profile errors.

Automatic ServiceMonitor deployment

If the Kubernetes cluster has the Prometheus Operator deployed, then the Security Profiles Operator will automatically create a ServiceMonitor resource within its namespace. This monitor allows automatic metrics discovery within the cluster, which is pointing to the right service, TLS certificates as well as bearer token secret.

When running on OpenShift and deploying upstream manifests or upstream OLM bundles, then the only configuration to be done is enabling user workloads by applying the following config map:

apiVersion: v1
kind: ConfigMap
metadata:
  name: cluster-monitoring-config
  namespace: openshift-monitoring
data:
  config.yaml: |
    enableUserWorkload: true

Note that the above is not needed when deploying the Security Profiles Operator on OpenShift from the Red Hat catalog, in that case, the Security Profiles Operator should be auto-configured and Prometheus should be able to scrape metrics automatically.

After that, the Security Profiles Operator can be deployed or updated, which will reconcile the ServiceMonitor into the cluster:

> kubectl -n security-profiles-operator logs security-profiles-operator-d7c8cfc86-47qh2 | grep monitor
I0520 09:29:35.578165       1 spod_controller.go:282] spod-config "msg"="Deploying operator service monitor"
> kubectl -n security-profiles-operator get servicemonitor
NAME                                 AGE
security-profiles-operator-monitor   35m

We can now verify in the Prometheus targets that all endpoints are serving the metrics:

> kubectl port-forward -n openshift-user-workload-monitoring pod/prometheus-user-workload-0 9090
Forwarding from 127.0.0.1:9090 -> 9090
Forwarding from [::1]:9090 -> 9090

prometheus targets

The OpenShift UI is now able to display the operator metrics, too:

prometheus targets

Using the log enricher

The operator ships with a log enrichment feature, which is disabled per default. The reason for that is that the log enricher container runs in privileged mode to be able to read the audit logs from the local node. It is also required that the enricher is able to read the host processes and therefore runs within host PID namespace (hostPID).

One of the following requirements to the Kubernetes node have to be fulfilled to use the log enrichment feature:

  • auditd needs to run and has to be configured to log into /var/log/audit/audit.log
  • syslog can be used as fallback to auditd and needs to log into /var/log/syslog. Depending on the system configuration, a printk rate limiting may be in place which has direct influence on the log enrichment. To disable the rate limiting, set the following sysctls:
    > sysctl -w kernel.printk_ratelimit=0
    > sysctl -w kernel.printk_ratelimit_burst=0
    

If all requirements are met, then the feature can be enabled by patching the spod configuration:

> kubectl -n security-profiles-operator patch spod spod --type=merge -p '{"spec":{"enableLogEnricher":true}}'
securityprofilesoperatordaemon.security-profiles-operator.x-k8s.io/spod patched

Alternatively, make sure the operator deployment sets the ENABLE_LOG_ENRICHER variable, to true, either by setting the environment variable in the deployment or by enabling the variable trough a Subscription resource, when installing the operator using OLM. See Constrain spod scheduling for an example of setting tolerations and affinity on the SPOD.

Now the operator will take care of re-deploying the spod DaemonSet and the enricher should listening on new changes to the audit logs:

> kubectl -n security-profiles-operator logs -f ds/spod log-enricher
I0623 12:51:04.257814 1854764 deleg.go:130] setup "msg"="starting component: log-enricher"  "buildDate"="1980-01-01T00:00:00Z" "compiler"="gc" "gitCommit"="unknown" "gitTreeState"="clean" "goVersion"="go1.16.2" "platform"="linux/amd64" "version"="0.4.0-dev"
I0623 12:51:04.257890 1854764 enricher.go:44] log-enricher "msg"="Starting log-enricher on node: 127.0.0.1"
I0623 12:51:04.257898 1854764 enricher.go:46] log-enricher "msg"="Connecting to local GRPC server"
I0623 12:51:04.258061 1854764 enricher.go:69] log-enricher "msg"="Reading from file /var/log/audit/audit.log"
2021/06/23 12:51:04 Sought /var/log/audit/audit.log - &{Offset:0 Whence:2}

To be able to trace an application, we have to create a logging profile like this:

apiVersion: security-profiles-operator.x-k8s.io/v1beta1
kind: SeccompProfile
metadata:
  name: log
  namespace: default
spec:
  defaultAction: SCMP_ACT_LOG

After the profile has been created, a corresponding workload can be started to use the profile:

apiVersion: v1
kind: Pod
metadata:
  name: log-pod
spec:
  securityContext:
    seccompProfile:
      type: Localhost
      localhostProfile: operator/default/log.json
  containers:
    - name: log-container
      image: nginx

If the pod is running, then we can examine the log enricher output:

> kubectl -n security-profiles-operator logs -f ds/spod log-enricher
…
I0623 12:59:10.220291 1854764 container.go:77] log-enricher "msg"="container ID is still empty, retrying"  "containerName"="log-container"
I0623 12:59:10.724938 1854764 container.go:77] log-enricher "msg"="container ID is still empty, retrying"  "containerName"="log-container"
I0623 12:59:11.479869 1854764 enricher.go:111] log-enricher "msg"="audit"  "container"="log-container" "executable"="/" "namespace"="default" "node"="127.0.0.1" "pid"=1905792 "pod"="log-pod" "syscallID"=3 "syscallName"="close" "timestamp"="1624453150.205:1061" "type"="seccomp"
I0623 12:59:11.487323 1854764 enricher.go:111] log-enricher "msg"="audit"  "container"="log-container" "executable"="/" "namespace"="default" "node"="127.0.0.1" "pid"=1905792 "pod"="log-pod" "syscallID"=157 "syscallName"="prctl" "timestamp"="1624453150.205:1062" "type"="seccomp"
I0623 12:59:11.492157 1854764 enricher.go:111] log-enricher "msg"="audit"  "container"="log-container" "executable"="/" "namespace"="default" "node"="127.0.0.1" "pid"=1905792 "pod"="log-pod" "syscallID"=157 "syscallName"="prctl" "timestamp"="1624453150.205:1063" "type"="seccomp"
…
I0623 12:59:20.258523 1854764 enricher.go:111] log-enricher "msg"="audit"  "container"="log-container" "executable"="/usr/sbin/nginx" "namespace"="default" "node"="127.0.0.1" "pid"=1905792 "pod"="log-pod" "syscallID"=12 "syscallName"="brk" "timestamp"="1624453150.235:2873" "type"="seccomp"
I0623 12:59:20.263349 1854764 enricher.go:111] log-enricher "msg"="audit"  "container"="log-container" "executable"="/usr/sbin/nginx" "namespace"="default" "node"="127.0.0.1" "pid"=1905792 "pod"="log-pod" "syscallID"=21 "syscallName"="access" "timestamp"="1624453150.235:2874" "type"="seccomp"
I0623 12:59:20.354091 1854764 enricher.go:111] log-enricher "msg"="audit"  "container"="log-container" "executable"="/usr/sbin/nginx" "namespace"="default" "node"="127.0.0.1" "pid"=1905792 "pod"="log-pod" "syscallID"=257 "syscallName"="openat" "timestamp"="1624453150.235:2875" "type"="seccomp"
I0623 12:59:20.358844 1854764 enricher.go:111] log-enricher "msg"="audit"  "container"="log-container" "executable"="/usr/sbin/nginx" "namespace"="default" "node"="127.0.0.1" "pid"=1905792 "pod"="log-pod" "syscallID"=5 "syscallName"="fstat" "timestamp"="1624453150.235:2876" "type"="seccomp"
I0623 12:59:20.363510 1854764 enricher.go:111] log-enricher "msg"="audit"  "container"="log-container" "executable"="/usr/sbin/nginx" "namespace"="default" "node"="127.0.0.1" "pid"=1905792 "pod"="log-pod" "syscallID"=9 "syscallName"="mmap" "timestamp"="1624453150.235:2877" "type"="seccomp"
I0623 12:59:20.454127 1854764 enricher.go:111] log-enricher "msg"="audit"  "container"="log-container" "executable"="/usr/sbin/nginx" "namespace"="default" "node"="127.0.0.1" "pid"=1905792 "pod"="log-pod" "syscallID"=3 "syscallName"="close" "timestamp"="1624453150.235:2878" "type"="seccomp"
I0623 12:59:20.458654 1854764 enricher.go:111] log-enricher "msg"="audit"  "container"="log-container" "executable"="/usr/sbin/nginx" "namespace"="default" "node"="127.0.0.1" "pid"=1905792 "pod"="log-pod" "syscallID"=257 "syscallName"="openat" "timestamp"="1624453150.235:2879" "type"="seccomp"
…

The startup of the nginx container already invokes a huge amount of syscalls, which are now all available within a human readable way within the log enricher.

The metrics endpoint of the Security Profiles Operator can be used to examine the log enricher data in a more structured way. This means that each syscall invocation will create a new metric entry security_profiles_operator_seccomp_profile_audit_total containing the corresponding metadata as labels:

# HELP security_profiles_operator_seccomp_profile_audit_total Counter about seccomp profile audits, requires the log enricher to be enabled.
# TYPE security_profiles_operator_seccomp_profile_audit_total counter
security_profiles_operator_seccomp_profile_audit_total{container="log-container",executable="/usr/sbin/nginx",namespace="default",node="127.0.0.1",pod="log-pod",syscall="access"} 1
security_profiles_operator_seccomp_profile_audit_total{container="log-container",executable="/usr/sbin/nginx",namespace="default",node="127.0.0.1",pod="log-pod",syscall="arch_prctl"} 1
security_profiles_operator_seccomp_profile_audit_total{container="log-container",executable="/usr/sbin/nginx",namespace="default",node="127.0.0.1",pod="log-pod",syscall="bind"} 2
security_profiles_operator_seccomp_profile_audit_total{container="log-container",executable="/usr/sbin/nginx",namespace="default",node="127.0.0.1",pod="log-pod",syscall="brk"} 18
security_profiles_operator_seccomp_profile_audit_total{container="log-container",executable="/usr/sbin/nginx",namespace="default",node="127.0.0.1",pod="log-pod",syscall="close"} 154
security_profiles_operator_seccomp_profile_audit_total{container="log-container",executable="/usr/sbin/nginx",namespace="default",node="127.0.0.1",pod="log-pod",syscall="pread64"} 4
security_profiles_operator_seccomp_profile_audit_total{container="log-container",executable="/usr/sbin/nginx",namespace="default",node="127.0.0.1",pod="log-pod",syscall="prlimit64"} 3
security_profiles_operator_seccomp_profile_audit_total{container="log-container",executable="/usr/sbin/nginx",namespace="default",node="127.0.0.1",pod="log-pod",syscall="pwrite64"} 1
security_profiles_operator_seccomp_profile_audit_total{container="log-container",executable="/usr/sbin/nginx",namespace="default",node="127.0.0.1",pod="log-pod",syscall="recvmsg"} 120
security_profiles_operator_seccomp_profile_audit_total{container="log-container",executable="/usr/sbin/nginx",namespace="default",node="127.0.0.1",pod="log-pod",syscall="rt_sigaction"} 14
security_profiles_operator_seccomp_profile_audit_total{container="log-container",executable="/usr/sbin/nginx",namespace="default",node="127.0.0.1",pod="log-pod",syscall="rt_sigprocmask"} 14
security_profiles_operator_seccomp_profile_audit_total{container="log-container",executable="/usr/sbin/nginx",namespace="default",node="127.0.0.1",pod="log-pod",syscall="rt_sigsuspend"} 1
security_profiles_operator_seccomp_profile_audit_total{container="log-container",executable="/usr/sbin/nginx",namespace="default",node="127.0.0.1",pod="log-pod",syscall="sendmsg"} 68
security_profiles_operator_seccomp_profile_audit_total{container="log-container",executable="/usr/sbin/nginx",namespace="default",node="127.0.0.1",pod="log-pod",syscall="set_robust_list"} 13
security_profiles_operator_seccomp_profile_audit_total{container="log-container",executable="/usr/sbin/nginx",namespace="default",node="127.0.0.1",pod="log-pod",syscall="set_tid_address"} 1
security_profiles_operator_seccomp_profile_audit_total{container="log-container",executable="/usr/sbin/nginx",namespace="default",node="127.0.0.1",pod="log-pod",syscall="setgid"} 12
security_profiles_operator_seccomp_profile_audit_total{container="log-container",executable="/usr/sbin/nginx",namespace="default",node="127.0.0.1",pod="log-pod",syscall="setgroups"} 12
security_profiles_operator_seccomp_profile_audit_total{container="log-container",executable="/usr/sbin/nginx",namespace="default",node="127.0.0.1",pod="log-pod",syscall="setsockopt"} 3
security_profiles_operator_seccomp_profile_audit_total{container="log-container",executable="/usr/sbin/nginx",namespace="default",node="127.0.0.1",pod="log-pod",syscall="setuid"} 12
security_profiles_operator_seccomp_profile_audit_total{container="log-container",executable="/usr/sbin/nginx",namespace="default",node="127.0.0.1",pod="log-pod",syscall="socket"} 6
security_profiles_operator_seccomp_profile_audit_total{container="log-container",executable="/usr/sbin/nginx",namespace="default",node="127.0.0.1",pod="log-pod",syscall="socketpair"} 24
security_profiles_operator_seccomp_profile_audit_total{container="log-container",executable="/usr/sbin/nginx",namespace="default",node="127.0.0.1",pod="log-pod",syscall="stat"} 6
security_profiles_operator_seccomp_profile_audit_total{container="log-container",executable="/usr/sbin/nginx",namespace="default",node="127.0.0.1",pod="log-pod",syscall="sysinfo"} 1
security_profiles_operator_seccomp_profile_audit_total{container="log-container",executable="/usr/sbin/nginx",namespace="default",node="127.0.0.1",pod="log-pod",syscall="uname"} 2
security_profiles_operator_seccomp_profile_audit_total{container="log-container",executable="/usr/sbin/nginx",namespace="default",node="127.0.0.1",pod="log-pod",syscall="write"} 20

Configuring webhooks

Both profile binding and profile recording make use of webhooks. Their configuration (an instance of MutatingWebhookConfiguration CR) is managed by SPO itself and not part of the deployed YAML manifests. While the defaults should be acceptable for the majority of users and the webhooks do nothing unless an instance of either ProfileBinding or ProfileRecording exists in a namespace and in addition the namespace must be labeled with either spo.x-k8s.io/enable-binding or spo.x-k8s.io/enable-recording respectively by default, it might still be useful to configure the webhooks.

In order to change webhook's configuration, the spod CR exposes an object webhookOptions that allows the failurePolicy, namespaceSelector and objectSelector to be set. This way you can set the webhooks to "soft-fail" or restrict them to a subset of a namespaces and inside those namespaces select only a subset of object matching the objectSelector so that even if the webhooks had a bug that would prevent them from running at all, other namespaces or resources wouldn't be affected.

For example, to set the binding.spo.io webhook's configuration to ignore errors as well as restrict it to a subset of namespaces labeled with spo.x-k8s.io/bind-here=true, create a following patch file:

spec:
  webhookOptions:
    - name: binding.spo.io
      failurePolicy: Ignore
      namespaceSelector:
        matchExpressions:
          - key: spo.x-k8s.io/bind-here
            operator: In
            values:
              - "true"

And patch the spod/spod instance:

$ kubectl -nsecurity-profiles-operator patch spod spod -p $(cat /tmp/spod-wh.patch) --type=merge

To view the resulting MutatingWebhookConfiguration, call:

$ kubectl get MutatingWebhookConfiguration spo-mutating-webhook-configuration -oyaml

Troubleshooting

Confirm that the profile is being reconciled:

$ kubectl -n security-profiles-operator logs security-profiles-operator-mzw9t
I1019 19:34:14.942464       1 main.go:90] setup "msg"="starting security-profiles-operator"  "buildDate"="2020-10-19T19:31:24Z" "compiler"="gc" "gitCommit"="a3ef0e1ea6405092268c18f240b62015c247dd9d" "gitTreeState"="dirty" "goVersion"="go1.15.1" "platform"="linux/amd64" "version"="0.2.0-dev"
I1019 19:34:15.348389       1 listener.go:44] controller-runtime/metrics "msg"="metrics server is starting to listen"  "addr"=":8080"
I1019 19:34:15.349076       1 main.go:126] setup "msg"="starting manager"
I1019 19:34:15.349449       1 internal.go:391] controller-runtime/manager "msg"="starting metrics server"  "path"="/metrics"
I1019 19:34:15.350201       1 controller.go:142] controller "msg"="Starting EventSource" "controller"="profile" "reconcilerGroup"="security-profiles-operator.x-k8s.io" "reconcilerKind"="SeccompProfile" "source"={"Type":{"metadata":{"creationTimestamp":null},"spec":{"defaultAction":""}}}
I1019 19:34:15.450674       1 controller.go:149] controller "msg"="Starting Controller" "controller"="profile" "reconcilerGroup"="security-profiles-operator.x-k8s.io" "reconcilerKind"="SeccompProfile"
I1019 19:34:15.450757       1 controller.go:176] controller "msg"="Starting workers" "controller"="profile" "reconcilerGroup"="security-profiles-operator.x-k8s.io" "reconcilerKind"="SeccompProfile" "worker count"=1
I1019 19:34:15.453102       1 profile.go:148] profile "msg"="Reconciled profile from SeccompProfile" "namespace"="security-profiles-operator" "profile"="nginx-1.19.1" "name"="nginx-1.19.1" "resource version"="728"
I1019 19:34:15.453618       1 profile.go:148] profile "msg"="Reconciled profile from SeccompProfile" "namespace"="security-profiles-operator" "profile"="security-profiles-operator" "name"="security-profiles-operator" "resource version"="729"

Confirm that the seccomp profiles are saved into the correct path:

$ kubectl exec -t -n security-profiles-operator security-profiles-operator-v6p2h -- ls /var/lib/kubelet/seccomp/operator/my-namespace/my-workload
profile-block.json
profile-complain.json

Please note corrupted seccomp profiles can disrupt your workloads. Therefore, ensure that the user used cannot be abused by:

  • Not creating that user on the actual node.
  • Restricting the user ID to only security-profiles-operator (i.e. using PSP).
  • Not allowing other workloads to map any part of the path /var/lib/kubelet/seccomp/operator.

Enable CPU and memory profiling

It is possible to enable the CPU and memory profiling endpoints for debugging purposes. To be able to utilize the profiling support, patch the spod config by adjusting the enableProfiling value:

> kubectl -n security-profiles-operator patch spod spod --type=merge -p '{"spec":{"enableProfiling":true}}'
securityprofilesoperatordaemon.security-profiles-operator.x-k8s.io/spod patched

The containers of the daemon should now indicate that it's serving the profiling endpoint, where every container is using a different port:

> k logs --selector name=spod -c security-profiles-operator | grep "Starting profiling"
I1202 15:14:40.276363 2185724 main.go:226]  "msg"="Starting profiling server"  "endpoint"="localhost:6060"

> k logs --selector name=spod -c log-enricher | grep "Starting profiling"
I1202 15:14:40.364046 2185814 main.go:226]  "msg"="Starting profiling server"  "endpoint"="localhost:6061"

> k logs --selector name=spod -c bpf-recorder | grep "Starting profiling"
I1202 15:14:40.457506 2185914 main.go:226]  "msg"="Starting profiling server"  "endpoint"="localhost:6062"

Then use the pprof tool to look at the heap profile:

> go tool pprof http://$PODIP:6060/debug/pprof/heap

Or to look at a 30-second CPU profile:

go tool pprof http://$PODIP:6060/debug/pprof/profile?seconds=30

Note that selinuxd, if enabled, doesn't set up a HTTP listener, but only listens on a UNIX socket shared between selinuxd and the spod DS pod. Nonetheless, this socket can be used to reach the profiling endpoint as well:

kubectl exec spod-4pt84 -c selinuxd -- curl --unix-socket /var/run/selinuxd/selinuxd.sock http://localhost/debug/pprof/heap --output - > /tmp/heap.selinuxd
go tool pprof /tmp/heap.selinuxd

For a study of the facility in action, please visit: https://blog.golang.org/2011/06/profiling-go-programs.html

Use a custom /proc location for nested environments like kind

The operator configuration supports specifying a custom /proc location, which is required for the container ID retrieval of the log-enricher as well as the bpf-recorder. To use a custom path for /proc, just patch the spod accordingly:

kubectl patch spod spod --type=merge -p '{"spec":{"hostProcVolumePath":"/my-proc"}}'

Notes on OpenShift and SCCs

There are several things particular to OpenShift that are useful to be aware of when deploying and recording security profiles, mostly coming from OpenShift's default use of SCCs.

SELinux recording should allow seLinuxContext: RunAsAny

Recording of SELinux policies is implemented with a webhook that injects a special SELinux type to the pods being recorded. This type makes the pod run in "permissive" mode, logging all the AVC denials into audit.log. By default, especially with the more restrictive SCCs, a workload is not allowed to run with a custom SELinux policy, but uses an autogenerated type.

Therefore in order to record a workload, the workload must use a service account that is allowed to use an SCC that allows the webhook to inject this permissive type into it. This can be achieved by using any SCC that uses seLinuxContext: RunAsAny, including the privileged SCC shipped by default with OpenShift.

In addition, the namespace must be labeled with pod-security.kubernetes.io/enforce: privileged if your cluster enables the Pod Security Admission because only the privileged Pod Security Standard allows running with a custom SELinux policy. In contrast, even the restricted Pod Security Standard allows the use of Localhost seccomp profiles.

Replicating controllers and SCCs

When deploying SELinux policies for replicating controllers (deployments, daemonsets, ...), note that the pods that these controllers spawn are not running with the identity of the user who creates the workload. Unless a ServiceAccount is selected, this means that the pods might fall back to using one of the secure but restricted SCCs which don't allow to use a custom SELinux policy.

One option is to use an SCC with seLinuxContext: RunAsAny, but it's more secure to only restrict your workloads to the security profiles they should be using.

Taking the SELinux policy we recorded earlier for an nginx deployment as an example, we might create the following SCC which is based on the restricted SCC shipped in OpenShift, just allows our SELinux policy to be used. Note that we'll be deploying in the nginx-secure namespace, as you can see from the ServiceAccount name we are putting into the users array.

apiVersion: security.openshift.io/v1
kind: SecurityContextConstraints
metadata:
  annotations:
    kubernetes.io/description: A special SCC for running nginx with a custom SELinux policy
  name: nginx-secure
allowHostIPC: false
allowHostNetwork: false
allowHostPID: false
allowHostPorts: false
allowPrivilegeEscalation: true
allowPrivilegedContainer: false
allowedCapabilities: null
defaultAddCapabilities: null
fsGroup:
  type: MustRunAs
priority: null
readOnlyRootFilesystem: false
requiredDropCapabilities:
  - KILL
  - MKNOD
  - SETUID
  - SETGID
runAsUser:
  type: MustRunAsRange
seLinuxContext:
  type: MustRunAs
  seLinuxOptions:
    type: test-selinux-recording-nginx-0_nginx-secure.process
supplementalGroups:
  type: RunAsAny
users:
  - system:serviceaccount:nginx-secure:nginx-sa
volumes:
  - configMap
  - downwardAPI
  - emptyDir
  - persistentVolumeClaim
  - projected
  - secret

Please note that a common mistake when creating custom SCCs is to bind them to a wide range of users or SAs through the group attribute, e.g. the system:authenticated group. Make sure your SCC is only usable by the serviceAccount it is supposed to be used by. Please refer to the OCP documentation or this Red Hat blog post for more information on managing SCCs.

Then we create the appropriate role:

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
  name: nginx
  namespace: nginx-secure
rules:
  - apiGroups:
      - security.openshift.io
    resources:
      - securitycontextconstraints
    resourceNames:
      - nginx-secure
    verbs:
      - use

and finally a role binding and the SA.

With all that set up, we can finally create our deployment:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: my-deployment
spec:
  selector:
    matchLabels:
      app: nginx
  replicas: 2
  template:
    metadata:
      labels:
        app: nginx
    spec:
      serviceAccountName: nginx-sa
      containers:
        - name: nginx
          image: nginxinc/nginx-unprivileged:1.21

Note that we don't specify the SELinux type at all in the workload, that's handled by the SCC instead. When the pods are created through the deployment and its ReplicaSet, they should be running with the appropriate profile.

Create an AppArmor profile

Ensure that the daemon has AppArmor enabled:

> kubectl -n security-profiles-operator patch spod spod --type=merge -p '{"spec":{"enableAppArmor":true}}'
securityprofilesoperatordaemon.security-profiles-operator.x-k8s.io/spod patched

Use the AppArmorProfile kind to create AppArmor profiles. Example:

---
apiVersion: security-profiles-operator.x-k8s.io/v1alpha1
kind: AppArmorProfile
metadata:
  name: test-profile
  annotations:
    description: Block writing to any files in the disk.
spec:
  abstract:
    filesystem:
      readOnlyPaths: []
      readWritePaths: []
      writeOnlyPaths: []
  complainMode: false
  disabled: false

Note that the name of the profile inside spec.policy matches the metadata.name, this is currently a requirement as mentioned within the known limitations below.

Based on the policy above, an AppArmor profile test-profile will be created and loaded in all nodes within the cluster. The profile will be placed in enforce mode. If you want to switch it to complain mode, you need to change the complainMode flag to true. In this mode, if the profile rules don't grant permissions to an action, that action will be allowed, but the violation will be logged with a tag of ALLOWED unconfined.

Apply an AppArmor profile to a pod

Once the AppArmor profile is created and loaded in all cluster nodes, you can restrict Pod's access in its security context as following:

    securityContext:
      appArmorProfile:
        type: Localhost
        localhostProfile: test-profile

You can see more details in the official documentation.

Record an AppArmor profile

The operator is able to record AppArmor profiles for a workload using the build-in eBPF recorder. For more details, please refer to the eBPF based recording) section.

You will need to use kind: AppArmorProfile in ProfileRecording CR instead of SeccompProfile.

Note that log enricher doesn't support recording of AppArmor profiles.

Known limitations

  • The reconciler will simply load the profiles across the cluster. If an existing profile with the same name exists, it will be replaced. This might cause an existing profile to be overwritten (See issue 2582 for details).
  • Restrictive profiles may block sub processes to be created, or a container from successfully loading. To work around the issue, set the AppArmor profile to complain mode.

Command Line Interface (CLI)

The Seucrity Profiles Operator CLI spoc aims to support use cases where Kubernetes is not available at all (for example in edge scenarios). It targets to provide re-used functionality from the operator itself, especially for development and testing environments. In the future, we plan to extend the CLI to interact with the operator itself.

For now, the CLI is able to:

  • Record seccomp profiles for a command in YAML (CRD) and JSON (OCI) format.
  • Run commands with applied seccomp profiles in both formats.

spoc can be retrieved either by downloading the statically linked binary directly from the available releases, or by running it within the official container images:

> podman run -it gcr.io/k8s-staging-sp-operator/security-profiles-operator:latest spoc
NAME:
   spoc - Security Profiles Operator CLI

USAGE:
   spoc [global options] command [command options] [arguments...]

COMMANDS:
   version, v  display detailed version information
   record, r   run a command and record the security profile
   run, x      run a command using a security profile
   help, h     Shows a list of commands or help for one command

Record seccomp profiles for a command

To record a seccomp profile via spoc, run the corresponding subcommand followed by any command and arguments:

> sudo spoc record echo test
2023/03/10 10:09:09 Loading bpf module

2023/03/10 10:09:13 Adding base syscalls: capget, capset, chdir, …
2023/03/10 10:09:13 Wrote seccomp profile to: /tmp/profile.yaml
2023/03/10 10:09:13 Unloading bpf module

Now the seccomp profile should be written in the CRD format:

> cat /tmp/profile.yaml
apiVersion: security-profiles-operator.x-k8s.io/v1beta1
kind: SeccompProfile
metadata:
  name: echo
spec:
  architectures:
    - SCMP_ARCH_X86_64
  defaultAction: SCMP_ACT_ERRNO
  syscalls:
    - action: SCMP_ACT_ALLOW
      names:
        - access
        - 
        - write
status: {}

The output file path can be specified as well by using spoc record -o/--output-file.

We can see that spoc automatically adds required base syscalls for OCI container runtimes to ensure compatibility with them to allow using the profile within Kubernetes. This behavior can be disabled by using spoc record -n/--no-base-syscalls, or by specifying custom syscalls via spoc record -b/--base-syscalls.

It is also possible to change the format to JSON via spoc record -t/--type raw-seccomp:

> sudo spoc record -t raw-seccomp echo test

2023/03/10 10:15:17 Wrote seccomp profile to: /tmp/profile.json
2023/03/10 10:15:17 Unloading bpf module
> jq . /tmp/profile.json
{
  "defaultAction": "SCMP_ACT_ERRNO",
  "architectures": ["SCMP_ARCH_X86_64"],
  "syscalls": [
    {
      "names": ["access", "", "write"],
      "action": "SCMP_ACT_ALLOW"
    }
  ]
}

All commands are interruptible by using Ctrl^C, while spoc record will still write the resulting seccomp profile after process terminating.

Run commands with seccomp profiles

If we now want to test the resulting profile, then spoc is able to run any command by using seccomp profiles via spoc run:

> sudo spoc run -p /tmp/profile.yaml echo test
2023/03/10 10:20:00 Reading file /tmp/profile.json
2023/03/10 10:20:00 Setting up seccomp
2023/03/10 10:20:00 Load seccomp profile
2023/03/10 10:20:00 Running command with PID: 567625
test

If we now modify the profile, for example by forbidding chmod:

> jq 'del(.syscalls[0].names[] | select(. | contains("chmod")))' /tmp/profile.json > /tmp/profile-chmod.json

Then running chmod via spoc run will now throw an error, because the syscall is not allowed any more:

> sudo spoc run -p /tmp/profile-chmod.json chmod +x /tmp/profile-chmod.json
2023/03/10 10:25:38 Reading file /tmp/profile-chmod.json
2023/03/10 10:25:38 Setting up seccomp
2023/03/10 10:25:38 Load seccomp profile
2023/03/10 10:25:38 Running command with PID: 594242
chmod: changing permissions of '/tmp/profile-chmod.json': Operation not permitted
2023/03/10 10:25:38 Command did not exit successfully: exit status 1

Pull security profiles from OCI registries

The spoc client is able to pull security profiles from OCI artifact compatible registries. To do that, just run spoc pull:

> spoc pull ghcr.io/security-profiles/runc:v1.2.2
16:32:29.795597 Pulling profile from: ghcr.io/security-profiles/runc:v1.2.2
16:32:29.795610 Verifying signature

Verification for ghcr.io/security-profiles/runc:v1.2.2 --
The following checks were performed on each of these signatures:
  - Existence of the claims in the transparency log was verified offline
  - The code-signing certificate was verified using trusted certificate authority certificates

[{"critical":{"identity":{"docker-reference":"ghcr.io/security-profiles/runc"},…}}]
16:32:33.208695 Creating file store in: /tmp/pull-3199397214
16:32:33.208713 Verifying reference: ghcr.io/security-profiles/runc:v1.2.2
16:32:33.208718 Creating repository for ghcr.io/security-profiles/runc
16:32:33.208742 Using tag: v1.2.2
16:32:33.208743 Copying profile from repository
16:32:34.119652 Reading profile
16:32:34.119677 Trying to unmarshal seccomp profile
16:32:34.120114 Got SeccompProfile: runc-v1.2.2
16:32:34.120119 Saving profile in: /tmp/profile.yaml

The profile can be now found in /tmp/profile.yaml or the specified output file --output-file / -o. If username and password authentication is required, either use the --username, -u flag or export the USERNAME environment variable. To set the password, export the PASSWORD environment variable.

Push security profiles to OCI registries

The spoc client is also able to push security profiles from OCI artifact compatible registries. To do that, just run spoc push:

> export USERNAME=my-user
> export PASSWORD=my-pass
> spoc push -f ./examples/baseprofile-crun.yaml ghcr.io/security-profiles/crun:v1.8.1
16:35:43.899886 Pushing profile ./examples/baseprofile-crun.yaml to: ghcr.io/security-profiles/crun:v1.8.1
16:35:43.899939 Creating file store in: /tmp/push-3618165827
16:35:43.899947 Adding profile to store: ./examples/baseprofile-crun.yaml
16:35:43.900061 Packing files
16:35:43.900282 Verifying reference: ghcr.io/security-profiles/crun:v1.8.1
16:35:43.900310 Using tag: v1.8.1
16:35:43.900313 Creating repository for ghcr.io/security-profiles/crun
16:35:43.900319 Using username and password
16:35:43.900321 Copying profile to repository
16:35:46.976108 Signing container image
Generating ephemeral keys...
Retrieving signed certificate...

        Note that there may be personally identifiable information associated with this signed artifact.
        This may include the email address associated with the account with which you authenticate.
        This information will be used for signing this artifact and will be stored in public transparency logs and cannot be removed later.

By typing 'y', you attest that you grant (or have permission to grant) and agree to have this information stored permanently in transparency logs.
Your browser will now be opened to:
https://oauth2.sigstore.dev/auth/auth?access_type=…
Successfully verified SCT...
tlog entry created with index: 16520520
Pushing signature to: ghcr.io/security-profiles/crun

We can specify an username and password in the same way as for spoc pull. Please also note that signing is always required for push and pull. It is possible to add custom annotations to the security profile by using the --annotations / -a flag multiple times in KEY:VALUE format.

Using multiple platforms

spoc push supports specifying the target platforms for the profiles to be pushed. This can be done by using the --platforms / -p together with the --profiles / -p flag. For example, to push two profiles into one artifact:

> spoc push -f ./profile-amd64.yaml -p linux/amd64 -f ./profile-arm64.yaml -p linux/arm64 ghcr.io/security-profiles/test:latest
10:59:17.887884 Pushing profiles to: ghcr.io/security-profiles/test:latest
10:59:17.887970 Creating file store in: /tmp/push-2265359353
10:59:17.887989 Adding 2 profiles
10:59:17.887995 Adding profile ./profile-arm64.yaml for platform linux/arm64 to store
10:59:17.888193 Adding profile ./profile-amd64.yaml for platform linux/amd64 to store
10:59:17.888240 Packing files
…
Pushing signature to: ghcr.io/security-profiles/test

The pushed artifact now contains both profiles, separated by their platform:

> skopeo inspect --raw docker://ghcr.io/security-profiles/test:latest | jq .
{
  "schemaVersion": 2,
  "mediaType": "application/vnd.oci.image.manifest.v1+json",
  "config": {
    "mediaType": "application/vnd.unknown.config.v1+json",
    "digest": "sha256:44136fa355b3678a1146ad16f7e8649e94fb4fc21fe77e8310c060f61caaff8a",
    "size": 2
  },
  "layers": [
    {
      "mediaType": "application/vnd.oci.image.layer.v1.tar",
      "digest": "sha256:6ddecdf312758a19ec788c3984418541274b3c9daf2b10f687d847bc283b391b",
      "size": 1167,
      "annotations": {
        "org.opencontainers.image.title": "profile-linux-arm64.yaml"
      },
      "platform": {
        "architecture": "arm64",
        "os": "linux"
      }
    },
    {
      "mediaType": "application/vnd.oci.image.layer.v1.tar",
      "digest": "sha256:6ddecdf312758a19ec788c3984418541274b3c9daf2b10f687d847bc283b391b",
      "size": 1167,
      "annotations": {
        "org.opencontainers.image.title": "profile-linux-amd64.yaml"
      },
      "platform": {
        "architecture": "amd64",
        "os": "linux"
      }
    }
  ],
  "annotations": {
    "org.opencontainers.image.created": "2023-04-28T08:59:17Z"
  }
}

There are a few fallback scenarios included in the CLI:

  • If neither a platform nor a input file is specified, then spoc will fallback to the default profile (/tmp/profile.yaml) and platform (runtime.GOOS/runtime.GOARCH).
  • If only one platform is specified, then spoc will apply it and use the default profile.
  • If only one input file is specified, then spoc will apply it and use the default platform.
  • If multiple platforms and input files are provided, then spoc requires them to match their occurrences. Platforms have to be unique as well.

The Security Profiles Operator will try to pull the correct profile by using runtime.GOOS/runtime.GOARCH, but also falls back to the default profile (without any platform specified), if it exists. spoc pull behaves in the same way, for example if a profile does not support any platform:

> spoc pull ghcr.io/security-profiles/runc:v1.2.2
11:07:14.788840 Pulling profile from: ghcr.io/security-profiles/runc:v1.2.2
11:07:14.788852 Verifying signature
…
11:07:17.559037 Copying profile from repository
11:07:18.359152 Trying to read profile: profile-linux-amd64.yaml
11:07:18.359209 Trying to read profile: profile.yaml
11:07:18.359224 Trying to unmarshal seccomp profile
11:07:18.359728 Got SeccompProfile: runc-v1.2.2
11:07:18.359732 Saving profile in: /tmp/profile.yaml

We can see from the logs that spoc tries to read profile-linux-amd64.yaml, and if that does not work it falls back to profile.yaml. We can also directly specify which platform to pull:

> spoc pull -p linux/arm64 ghcr.io/security-profiles/test:latest
11:08:53.355689 Pulling profile from: ghcr.io/security-profiles/test:latest
11:08:53.355724 Verifying signature
…
11:08:56.229418 Copying profile from repository
11:08:57.311964 Trying to read profile: profile-linux-arm64.yaml
11:08:57.311981 Trying to unmarshal seccomp profile
11:08:57.312473 Got SeccompProfile: crun-v1.8.4
11:08:57.312476 Saving profile in: /tmp/profile.yaml

Uninstalling

To uninstall, remove the profiles before removing the rest of the operator:

$ kubectl delete seccompprofiles --all --all-namespaces
$ kubectl delete -f https://raw.githubusercontent.com/kubernetes-sigs/security-profiles-operator/main/deploy/operator.yaml