forked from tidyverse/dplyr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRcppExports.R
217 lines (171 loc) · 6.05 KB
/
RcppExports.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# Generated by using Rcpp::compileAttributes() -> do not edit by hand
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393
loc <- function(data) {
.Call('dplyr_loc', PACKAGE = 'dplyr', data)
}
dfloc <- function(df) {
.Call('dplyr_dfloc', PACKAGE = 'dplyr', df)
}
plfloc <- function(data) {
.Call('dplyr_plfloc', PACKAGE = 'dplyr', data)
}
strings_addresses <- function(s) {
.Call('dplyr_strings_addresses', PACKAGE = 'dplyr', s)
}
gp <- function(x) {
.Call('dplyr_gp', PACKAGE = 'dplyr', x)
}
#' Enable internal logging
#'
#' Log entries, depending on the log level, will be printed to the standard
#' error stream.
#'
#' @param log_level A character value, one of "WARN", "INFO", "DEBUG", "VERB",
#' or "NONE".
#'
#' @keywords internal
init_logging <- function(log_level) {
invisible(.Call('dplyr_init_logging', PACKAGE = 'dplyr', log_level))
}
arrange_impl <- function(data, dots) {
.Call('dplyr_arrange_impl', PACKAGE = 'dplyr', data, dots)
}
#' Do values in a numeric vector fall in specified range?
#'
#' This is a shortcut for \code{x >= left & x <= right}, implemented
#' efficiently in C++ for local values, and translated to the
#' appropriate SQL for remote tables.
#'
#' @param x A numeric vector of values
#' @param left,right Boundary values
#' @export
#' @examples
#' x <- rnorm(1e2)
#' x[between(x, -1, 1)]
between <- function(x, left, right) {
.Call('dplyr_between', PACKAGE = 'dplyr', x, left, right)
}
bind_rows_ <- function(dots, id = NULL) {
.Call('dplyr_bind_rows_', PACKAGE = 'dplyr', dots, id)
}
rbind_list__impl <- function(dots) {
.Call('dplyr_rbind_list__impl', PACKAGE = 'dplyr', dots)
}
cbind_all <- function(dots) {
.Call('dplyr_cbind_all', PACKAGE = 'dplyr', dots)
}
combine_all <- function(data) {
.Call('dplyr_combine_all', PACKAGE = 'dplyr', data)
}
combine_vars <- function(vars, xs) {
.Call('dplyr_combine_vars', PACKAGE = 'dplyr', vars, xs)
}
distinct_impl <- function(df, vars, keep) {
.Call('dplyr_distinct_impl', PACKAGE = 'dplyr', df, vars, keep)
}
n_distinct_multi <- function(variables, na_rm = FALSE) {
.Call('dplyr_n_distinct_multi', PACKAGE = 'dplyr', variables, na_rm)
}
filter_impl <- function(df, dots) {
.Call('dplyr_filter_impl', PACKAGE = 'dplyr', df, dots)
}
resolve_vars <- function(new_groups, names) {
.Call('dplyr_resolve_vars', PACKAGE = 'dplyr', new_groups, names)
}
grouped_df_impl <- function(data, symbols, drop) {
.Call('dplyr_grouped_df_impl', PACKAGE = 'dplyr', data, symbols, drop)
}
as_regular_df <- function(df) {
.Call('dplyr_as_regular_df', PACKAGE = 'dplyr', df)
}
ungroup_grouped_df <- function(df) {
.Call('dplyr_ungroup_grouped_df', PACKAGE = 'dplyr', df)
}
grouped_indices_grouped_df_impl <- function(gdf) {
.Call('dplyr_grouped_indices_grouped_df_impl', PACKAGE = 'dplyr', gdf)
}
grouped_indices_impl <- function(data, symbols) {
.Call('dplyr_grouped_indices_impl', PACKAGE = 'dplyr', data, symbols)
}
group_size_grouped_cpp <- function(gdf) {
.Call('dplyr_group_size_grouped_cpp', PACKAGE = 'dplyr', gdf)
}
semi_join_impl <- function(x, y, by_x, by_y) {
.Call('dplyr_semi_join_impl', PACKAGE = 'dplyr', x, y, by_x, by_y)
}
anti_join_impl <- function(x, y, by_x, by_y) {
.Call('dplyr_anti_join_impl', PACKAGE = 'dplyr', x, y, by_x, by_y)
}
inner_join_impl <- function(x, y, by_x, by_y, suffix_x, suffix_y) {
.Call('dplyr_inner_join_impl', PACKAGE = 'dplyr', x, y, by_x, by_y, suffix_x, suffix_y)
}
left_join_impl <- function(x, y, by_x, by_y, suffix_x, suffix_y) {
.Call('dplyr_left_join_impl', PACKAGE = 'dplyr', x, y, by_x, by_y, suffix_x, suffix_y)
}
right_join_impl <- function(x, y, by_x, by_y, suffix_x, suffix_y) {
.Call('dplyr_right_join_impl', PACKAGE = 'dplyr', x, y, by_x, by_y, suffix_x, suffix_y)
}
full_join_impl <- function(x, y, by_x, by_y, suffix_x, suffix_y) {
.Call('dplyr_full_join_impl', PACKAGE = 'dplyr', x, y, by_x, by_y, suffix_x, suffix_y)
}
slice_impl <- function(df, dots) {
.Call('dplyr_slice_impl', PACKAGE = 'dplyr', df, dots)
}
mutate_impl <- function(df, dots) {
.Call('dplyr_mutate_impl', PACKAGE = 'dplyr', df, dots)
}
select_impl <- function(df, vars) {
.Call('dplyr_select_impl', PACKAGE = 'dplyr', df, vars)
}
compatible_data_frame_nonames <- function(x, y, convert) {
.Call('dplyr_compatible_data_frame_nonames', PACKAGE = 'dplyr', x, y, convert)
}
compatible_data_frame <- function(x, y, ignore_col_order = TRUE, convert = FALSE) {
.Call('dplyr_compatible_data_frame', PACKAGE = 'dplyr', x, y, ignore_col_order, convert)
}
equal_data_frame <- function(x, y, ignore_col_order = TRUE, ignore_row_order = TRUE, convert = FALSE) {
.Call('dplyr_equal_data_frame', PACKAGE = 'dplyr', x, y, ignore_col_order, ignore_row_order, convert)
}
union_data_frame <- function(x, y) {
.Call('dplyr_union_data_frame', PACKAGE = 'dplyr', x, y)
}
intersect_data_frame <- function(x, y) {
.Call('dplyr_intersect_data_frame', PACKAGE = 'dplyr', x, y)
}
setdiff_data_frame <- function(x, y) {
.Call('dplyr_setdiff_data_frame', PACKAGE = 'dplyr', x, y)
}
summarise_impl <- function(df, dots) {
.Call('dplyr_summarise_impl', PACKAGE = 'dplyr', df, dots)
}
test_comparisons <- function() {
.Call('dplyr_test_comparisons', PACKAGE = 'dplyr')
}
assert_all_white_list <- function(data) {
invisible(.Call('dplyr_assert_all_white_list', PACKAGE = 'dplyr', data))
}
shallow_copy <- function(data) {
.Call('dplyr_shallow_copy', PACKAGE = 'dplyr', data)
}
#' Cumulativate versions of any, all, and mean
#'
#' dplyr adds \code{cumall}, \code{cumany}, and \code{cummean} to complete
#' R's set of cumulate functions to match the aggregation functions available
#' in most databases
#'
#' @param x For \code{cumall} & \code{cumany}, a logical vector; for
#' \code{cummean} an integer or numeric vector
#' @export
cumall <- function(x) {
.Call('dplyr_cumall', PACKAGE = 'dplyr', x)
}
#' @export
#' @rdname cumall
cumany <- function(x) {
.Call('dplyr_cumany', PACKAGE = 'dplyr', x)
}
#' @export
#' @rdname cumall
cummean <- function(x) {
.Call('dplyr_cummean', PACKAGE = 'dplyr', x)
}