forked from tidyverse/dplyr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtranslate-sql.r
233 lines (210 loc) · 7.66 KB
/
translate-sql.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#' Translate an expression to sql.
#'
#' @section Base translation:
#' The base translator, \code{base_sql},
#' provides custom mappings for \code{!} (to NOT), \code{&&} and \code{&} to
#' \code{AND}, \code{||} and \code{|} to \code{OR}, \code{^} to \code{POWER},
#' \code{\%>\%} to \code{\%}, \code{ceiling} to \code{CEIL}, \code{mean} to
#' \code{AVG}, \code{var} to \code{VARIANCE}, \code{tolower} to \code{LOWER},
#' \code{toupper} to \code{UPPER} and \code{nchar} to \code{length}.
#'
#' \code{c} and \code{:} keep their usual R behaviour so you can easily create
#' vectors that are passed to sql.
#'
#' All other functions will be preserved as is. R's infix functions
#' (e.g. \code{\%like\%}) will be converted to their sql equivalents
#' (e.g. \code{LIKE}). You can use this to access SQL string concatenation:
#' \code{||} is mapped to \code{OR}, but \code{\%||\%} is mapped to \code{||}.
#' To suppress this behaviour, and force errors immediately when dplyr doesn't
#' know how to translate a function it encounters, using set the
#' \code{dplyr.strict_sql} option to \code{TRUE}.
#'
#' You can also use \code{sql} to insert a raw sql string.
#'
#' @section SQLite translation:
#' The SQLite variant currently only adds one additional function: a mapping
#' from \code{sd} to the SQL aggregation function \code{stdev}.
#'
#' @param ...,dots Expressions to translate. \code{sql_translate}
#' automatically quotes them for you. \code{sql_translate_} expects
#' a list of already quoted objects.
#' @param con An optional database connection to control the details of
#' the translation. The default, \code{NULL}, generates ANSI SQL.
#' @param vars A character vector giving variable names in the remote
#' data source. If this is supplied, \code{translate_sql} will call
#' \code{\link{partial_eval}} to interpolate in the values from local
#' variables.
#' @param vars_group,vars_order Grouping and ordering variables used for
#' windowed functions.
#' @param window Use \code{FALSE} to suppress generation of the \code{OVER}
#' statement used for window functions. This is necessary when generating
#' SQL for a grouped summary.
#' @export
#' @examples
#' # Regular maths is translated in a very straightforward way
#' translate_sql(x + 1)
#' translate_sql(sin(x) + tan(y))
#'
#' # Note that all variable names are escaped
#' translate_sql(like == "x")
#' # In ANSI SQL: "" quotes variable _names_, '' quotes strings
#'
#' # Logical operators are converted to their sql equivalents
#' translate_sql(x < 5 & !(y >= 5))
#' # xor() doesn't have a direct SQL equivalent
#' translate_sql(xor(x, y))
#'
#' # If is translated into case when
#' translate_sql(if (x > 5) "big" else "small")
#'
#' # Infix functions are passed onto SQL with % removed
#' translate_sql(first %like% "Had%")
#' translate_sql(first %is% NULL)
#' translate_sql(first %in% c("John", "Roger", "Robert"))
#'
#'
#' # And be careful if you really want integers
#' translate_sql(x == 1)
#' translate_sql(x == 1L)
#'
#' # If you have an already quoted object, use translate_sql_:
#' x <- quote(y + 1 / sin(t))
#' translate_sql_(list(x))
#'
#' # Translation with known variables ------------------------------------------
#'
#' # If the variables in the dataset are known, translate_sql will interpolate
#' # in literal values from the current environment
#' x <- 10
#' translate_sql(mpg > x)
#' translate_sql(mpg > x, vars = names(mtcars))
#'
#' # By default all computations happens in sql
#' translate_sql(cyl == 2 + 2, vars = names(mtcars))
#' # Use local to force local evaluation
#' translate_sql(cyl == local(2 + 2), vars = names(mtcars))
#'
#' # This is also needed if you call a local function:
#' inc <- function(x) x + 1
#' translate_sql(mpg > inc(x), vars = names(mtcars))
#' translate_sql(mpg > local(inc(x)), vars = names(mtcars))
#'
#' # Windowed translation --------------------------------------------
#' # Known window functions automatically get OVER()
#' translate_sql(mpg > mean(mpg))
#'
#' # Suppress this with window = FALSE
#' translate_sql(mpg > mean(mpg), window = FALSE)
#'
#' # vars_group controls partition:
#' translate_sql(mpg > mean(mpg), vars_group = "cyl")
#'
#' # and vars_order controls ordering for those functions that need it
#' translate_sql(cumsum(mpg))
#' translate_sql(cumsum(mpg), vars_order = "mpg")
translate_sql <- function(...,
con = NULL,
vars = character(),
vars_group = NULL,
vars_order = NULL,
window = TRUE) {
dots <- lazyeval::lazy_dots(...)
translate_sql_(dots,
con = con,
vars = vars,
vars_group = vars_group,
vars_order = vars_order,
window = window
)
}
#' @export
#' @rdname translate_sql
translate_sql_ <- function(dots,
con = NULL,
vars = character(),
vars_group = NULL,
vars_order = NULL,
window = TRUE) {
expr <- lazyeval::as.lazy_dots(dots, env = parent.frame())
if (!any(has_names(expr))) {
names(expr) <- NULL
}
if (length(vars) > 0) {
# If variables are known, partially evaluate input
expr <- partial_eval2(expr, vars)
} else {
# Otherwise just extract expressions, ignoring the environment
# from which they came
expr <- lapply(expr, "[[", "expr")
}
variant <- sql_translate_env(con)
if (window) {
old_con <- set_partition_con(con)
on.exit(set_partition_con(old_con), add = TRUE)
old_group <- set_partition_group(vars_group)
on.exit(set_partition_group(old_group), add = TRUE)
old_order <- set_partition_order(vars_order)
on.exit(set_partition_order(old_order), add = TRUE)
}
pieces <- lapply(expr, function(x) {
if (is.atomic(x)) return(escape(x, con = con))
env <- sql_env(x, variant, con, window = window)
escape(eval(x, envir = env))
})
sql(unlist(pieces))
}
sql_env <- function(expr, variant, con, window = FALSE,
strict = getOption("dplyr.strict_sql")) {
stopifnot(is.sql_variant(variant))
# Default for unknown functions
if (!strict) {
unknown <- setdiff(all_calls(expr), names(variant))
default_env <- ceply(unknown, default_op, parent = emptyenv())
} else {
default_env <- new.env(parent = emptyenv())
}
# Known R -> SQL functions
special_calls <- copy_env(variant$scalar, parent = default_env)
if (!window) {
special_calls2 <- copy_env(variant$aggregate, parent = special_calls)
} else {
special_calls2 <- copy_env(variant$window, parent = special_calls)
}
# Existing symbols in expression
names <- all_names(expr)
name_env <- ceply(names, function(x) escape(ident(x), con = con),
parent = special_calls2)
# Known sql expressions
symbol_env <- copy_env(base_symbols, parent = name_env)
symbol_env
}
default_op <- function(x) {
assert_that(is.string(x))
infix <- c("::", "$", "@", "^", "*", "/", "+", "-", ">", ">=", "<", "<=",
"==", "!=", "!", "&", "&&", "|", "||", "~", "<-", "<<-")
if (x %in% infix) {
sql_infix(x)
} else if (grepl("^%.*%$", x)) {
x <- substr(x, 2, nchar(x) - 1)
sql_infix(x)
} else {
sql_prefix(x)
}
}
all_calls <- function(x) {
if (!is.call(x)) return(NULL)
fname <- as.character(x[[1]])
unique(c(fname, unlist(lapply(x[-1], all_calls), use.names = FALSE)))
}
all_names <- function(x) {
if (is.name(x)) return(as.character(x))
if (!is.call(x)) return(NULL)
unique(unlist(lapply(x[-1], all_names), use.names = FALSE))
}
# character vector -> environment
ceply <- function(x, f, ..., parent = parent.frame()) {
if (length(x) == 0) return(new.env(parent = parent))
l <- lapply(x, f, ...)
names(l) <- x
list2env(l, parent = parent)
}