-
Notifications
You must be signed in to change notification settings - Fork 80
/
train_flowers.py
299 lines (231 loc) · 12.1 KB
/
train_flowers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import tensorflow as tf
from tensorflow.contrib.framework.python.ops.variables import get_or_create_global_step
from tensorflow.python.platform import tf_logging as logging
import inception_preprocessing
from inception_resnet_v2 import inception_resnet_v2, inception_resnet_v2_arg_scope
import os
import time
slim = tf.contrib.slim
#================ DATASET INFORMATION ======================
#State dataset directory where the tfrecord files are located
dataset_dir = '.'
#State where your log file is at. If it doesn't exist, create it.
log_dir = './log'
#State where your checkpoint file is
checkpoint_file = './inception_resnet_v2_2016_08_30.ckpt'
#State the image size you're resizing your images to. We will use the default inception size of 299.
image_size = 299
#State the number of classes to predict:
num_classes = 5
#State the labels file and read it
labels_file = './labels.txt'
labels = open(labels_file, 'r')
#Create a dictionary to refer each label to their string name
labels_to_name = {}
for line in labels:
label, string_name = line.split(':')
string_name = string_name[:-1] #Remove newline
labels_to_name[int(label)] = string_name
#Create the file pattern of your TFRecord files so that it could be recognized later on
file_pattern = 'flowers_%s_*.tfrecord'
#Create a dictionary that will help people understand your dataset better. This is required by the Dataset class later.
items_to_descriptions = {
'image': 'A 3-channel RGB coloured flower image that is either tulips, sunflowers, roses, dandelion, or daisy.',
'label': 'A label that is as such -- 0:daisy, 1:dandelion, 2:roses, 3:sunflowers, 4:tulips'
}
#================= TRAINING INFORMATION ==================
#State the number of epochs to train
num_epochs = 70
#State your batch size
batch_size = 10
#Learning rate information and configuration (Up to you to experiment)
initial_learning_rate = 0.0002
learning_rate_decay_factor = 0.7
num_epochs_before_decay = 2
#============== DATASET LOADING ======================
#We now create a function that creates a Dataset class which will give us many TFRecord files to feed in the examples into a queue in parallel.
def get_split(split_name, dataset_dir, file_pattern=file_pattern):
'''
Obtains the split - training or validation - to create a Dataset class for feeding the examples into a queue later on. This function will
set up the decoder and dataset information all into one Dataset class so that you can avoid the brute work later on.
Your file_pattern is very important in locating the files later.
INPUTS:
- split_name(str): 'train' or 'validation'. Used to get the correct data split of tfrecord files
- dataset_dir(str): the dataset directory where the tfrecord files are located
- file_pattern(str): the file name structure of the tfrecord files in order to get the correct data
OUTPUTS:
- dataset (Dataset): A Dataset class object where we can read its various components for easier batch creation later.
'''
#First check whether the split_name is train or validation
if split_name not in ['train', 'validation']:
raise ValueError('The split_name %s is not recognized. Please input either train or validation as the split_name' % (split_name))
#Create the full path for a general file_pattern to locate the tfrecord_files
file_pattern_path = os.path.join(dataset_dir, file_pattern % (split_name))
#Count the total number of examples in all of these shard
num_samples = 0
file_pattern_for_counting = 'flowers_' + split_name
tfrecords_to_count = [os.path.join(dataset_dir, file) for file in os.listdir(dataset_dir) if file.startswith(file_pattern_for_counting)]
for tfrecord_file in tfrecords_to_count:
for record in tf.python_io.tf_record_iterator(tfrecord_file):
num_samples += 1
#Create a reader, which must be a TFRecord reader in this case
reader = tf.TFRecordReader
#Create the keys_to_features dictionary for the decoder
keys_to_features = {
'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''),
'image/format': tf.FixedLenFeature((), tf.string, default_value='jpg'),
'image/class/label': tf.FixedLenFeature(
[], tf.int64, default_value=tf.zeros([], dtype=tf.int64)),
}
#Create the items_to_handlers dictionary for the decoder.
items_to_handlers = {
'image': slim.tfexample_decoder.Image(),
'label': slim.tfexample_decoder.Tensor('image/class/label'),
}
#Start to create the decoder
decoder = slim.tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers)
#Create the labels_to_name file
labels_to_name_dict = labels_to_name
#Actually create the dataset
dataset = slim.dataset.Dataset(
data_sources = file_pattern_path,
decoder = decoder,
reader = reader,
num_readers = 4,
num_samples = num_samples,
num_classes = num_classes,
labels_to_name = labels_to_name_dict,
items_to_descriptions = items_to_descriptions)
return dataset
def load_batch(dataset, batch_size, height=image_size, width=image_size, is_training=True):
'''
Loads a batch for training.
INPUTS:
- dataset(Dataset): a Dataset class object that is created from the get_split function
- batch_size(int): determines how big of a batch to train
- height(int): the height of the image to resize to during preprocessing
- width(int): the width of the image to resize to during preprocessing
- is_training(bool): to determine whether to perform a training or evaluation preprocessing
OUTPUTS:
- images(Tensor): a Tensor of the shape (batch_size, height, width, channels) that contain one batch of images
- labels(Tensor): the batch's labels with the shape (batch_size,) (requires one_hot_encoding).
'''
#First create the data_provider object
data_provider = slim.dataset_data_provider.DatasetDataProvider(
dataset,
common_queue_capacity = 24 + 3 * batch_size,
common_queue_min = 24)
#Obtain the raw image using the get method
raw_image, label = data_provider.get(['image', 'label'])
#Perform the correct preprocessing for this image depending if it is training or evaluating
image = inception_preprocessing.preprocess_image(raw_image, height, width, is_training)
#As for the raw images, we just do a simple reshape to batch it up
raw_image = tf.expand_dims(raw_image, 0)
raw_image = tf.image.resize_nearest_neighbor(raw_image, [height, width])
raw_image = tf.squeeze(raw_image)
#Batch up the image by enqueing the tensors internally in a FIFO queue and dequeueing many elements with tf.train.batch.
images, raw_images, labels = tf.train.batch(
[image, raw_image, label],
batch_size = batch_size,
num_threads = 4,
capacity = 4 * batch_size,
allow_smaller_final_batch = True)
return images, raw_images, labels
def run():
#Create the log directory here. Must be done here otherwise import will activate this unneededly.
if not os.path.exists(log_dir):
os.mkdir(log_dir)
#======================= TRAINING PROCESS =========================
#Now we start to construct the graph and build our model
with tf.Graph().as_default() as graph:
tf.logging.set_verbosity(tf.logging.INFO) #Set the verbosity to INFO level
#First create the dataset and load one batch
dataset = get_split('train', dataset_dir, file_pattern=file_pattern)
images, _, labels = load_batch(dataset, batch_size=batch_size)
#Know the number steps to take before decaying the learning rate and batches per epoch
num_batches_per_epoch = dataset.num_samples / batch_size
num_steps_per_epoch = num_batches_per_epoch #Because one step is one batch processed
decay_steps = int(num_epochs_before_decay * num_steps_per_epoch)
#Create the model inference
with slim.arg_scope(inception_resnet_v2_arg_scope()):
logits, end_points = inception_resnet_v2(images, num_classes = dataset.num_classes, is_training = True)
#Define the scopes that you want to exclude for restoration
exclude = ['InceptionResnetV2/Logits', 'InceptionResnetV2/AuxLogits']
variables_to_restore = slim.get_variables_to_restore(exclude = exclude)
#Perform one-hot-encoding of the labels (Try one-hot-encoding within the load_batch function!)
one_hot_labels = slim.one_hot_encoding(labels, dataset.num_classes)
#Performs the equivalent to tf.nn.sparse_softmax_cross_entropy_with_logits but enhanced with checks
loss = slim.losses.softmax_cross_entropy(logits, one_hot_labels)
total_loss = slim.losses.get_total_loss() #obtain the regularization losses as well
#Create the global step for monitoring the learning_rate and training.
global_step = get_or_create_global_step()
#Define your exponentially decaying learning rate
lr = tf.train.exponential_decay(
learning_rate = initial_learning_rate,
global_step = global_step,
decay_steps = decay_steps,
decay_rate = learning_rate_decay_factor,
staircase = True)
#Now we can define the optimizer that takes on the learning rate
optimizer = tf.train.AdamOptimizer(learning_rate = lr)
#Create the train_op.
train_op = slim.learning.create_train_op(total_loss, optimizer)
#State the metrics that you want to predict. We get a predictions that is not one_hot_encoded.
predictions = tf.argmax(end_points['Predictions'], 1)
probabilities = end_points['Predictions']
accuracy, accuracy_update = tf.contrib.metrics.streaming_accuracy(predictions, labels)
metrics_op = tf.group(accuracy_update, probabilities)
#Now finally create all the summaries you need to monitor and group them into one summary op.
tf.summary.scalar('losses/Total_Loss', total_loss)
tf.summary.scalar('accuracy', accuracy)
tf.summary.scalar('learning_rate', lr)
my_summary_op = tf.summary.merge_all()
#Now we need to create a training step function that runs both the train_op, metrics_op and updates the global_step concurrently.
def train_step(sess, train_op, global_step):
'''
Simply runs a session for the three arguments provided and gives a logging on the time elapsed for each global step
'''
#Check the time for each sess run
start_time = time.time()
total_loss, global_step_count, _ = sess.run([train_op, global_step, metrics_op])
time_elapsed = time.time() - start_time
#Run the logging to print some results
logging.info('global step %s: loss: %.4f (%.2f sec/step)', global_step_count, total_loss, time_elapsed)
return total_loss, global_step_count
#Now we create a saver function that actually restores the variables from a checkpoint file in a sess
saver = tf.train.Saver(variables_to_restore)
def restore_fn(sess):
return saver.restore(sess, checkpoint_file)
#Define your supervisor for running a managed session. Do not run the summary_op automatically or else it will consume too much memory
sv = tf.train.Supervisor(logdir = log_dir, summary_op = None, init_fn = restore_fn)
#Run the managed session
with sv.managed_session() as sess:
for step in xrange(num_steps_per_epoch * num_epochs):
#At the start of every epoch, show the vital information:
if step % num_batches_per_epoch == 0:
logging.info('Epoch %s/%s', step/num_batches_per_epoch + 1, num_epochs)
learning_rate_value, accuracy_value = sess.run([lr, accuracy])
logging.info('Current Learning Rate: %s', learning_rate_value)
logging.info('Current Streaming Accuracy: %s', accuracy_value)
# optionally, print your logits and predictions for a sanity check that things are going fine.
logits_value, probabilities_value, predictions_value, labels_value = sess.run([logits, probabilities, predictions, labels])
print 'logits: \n', logits_value
print 'Probabilities: \n', probabilities_value
print 'predictions: \n', predictions_value
print 'Labels:\n:', labels_value
#Log the summaries every 10 step.
if step % 10 == 0:
loss, _ = train_step(sess, train_op, sv.global_step)
summaries = sess.run(my_summary_op)
sv.summary_computed(sess, summaries)
#If not, simply run the training step
else:
loss, _ = train_step(sess, train_op, sv.global_step)
#We log the final training loss and accuracy
logging.info('Final Loss: %s', loss)
logging.info('Final Accuracy: %s', sess.run(accuracy))
#Once all the training has been done, save the log files and checkpoint model
logging.info('Finished training! Saving model to disk now.')
sv.saver.save(sess, sv.save_path, global_step = sv.global_step)
if __name__ == '__main__':
run()