forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sch_tbf.c
544 lines (438 loc) · 12 KB
/
sch_tbf.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
/*
* net/sched/sch_tbf.c Token Bucket Filter queue.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Authors: Alexey Kuznetsov, <[email protected]>
* Dmitry Torokhov <[email protected]> - allow attaching inner qdiscs -
* original idea by Martin Devera
*
*/
#include <linux/config.h>
#include <linux/module.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <linux/bitops.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/jiffies.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/in.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/notifier.h>
#include <net/ip.h>
#include <net/route.h>
#include <linux/skbuff.h>
#include <net/sock.h>
#include <net/pkt_sched.h>
/* Simple Token Bucket Filter.
=======================================
SOURCE.
-------
None.
Description.
------------
A data flow obeys TBF with rate R and depth B, if for any
time interval t_i...t_f the number of transmitted bits
does not exceed B + R*(t_f-t_i).
Packetized version of this definition:
The sequence of packets of sizes s_i served at moments t_i
obeys TBF, if for any i<=k:
s_i+....+s_k <= B + R*(t_k - t_i)
Algorithm.
----------
Let N(t_i) be B/R initially and N(t) grow continuously with time as:
N(t+delta) = min{B/R, N(t) + delta}
If the first packet in queue has length S, it may be
transmitted only at the time t_* when S/R <= N(t_*),
and in this case N(t) jumps:
N(t_* + 0) = N(t_* - 0) - S/R.
Actually, QoS requires two TBF to be applied to a data stream.
One of them controls steady state burst size, another
one with rate P (peak rate) and depth M (equal to link MTU)
limits bursts at a smaller time scale.
It is easy to see that P>R, and B>M. If P is infinity, this double
TBF is equivalent to a single one.
When TBF works in reshaping mode, latency is estimated as:
lat = max ((L-B)/R, (L-M)/P)
NOTES.
------
If TBF throttles, it starts a watchdog timer, which will wake it up
when it is ready to transmit.
Note that the minimal timer resolution is 1/HZ.
If no new packets arrive during this period,
or if the device is not awaken by EOI for some previous packet,
TBF can stop its activity for 1/HZ.
This means, that with depth B, the maximal rate is
R_crit = B*HZ
F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
Note that the peak rate TBF is much more tough: with MTU 1500
P_crit = 150Kbytes/sec. So, if you need greater peak
rates, use alpha with HZ=1000 :-)
With classful TBF, limit is just kept for backwards compatibility.
It is passed to the default bfifo qdisc - if the inner qdisc is
changed the limit is not effective anymore.
*/
struct tbf_sched_data
{
/* Parameters */
u32 limit; /* Maximal length of backlog: bytes */
u32 buffer; /* Token bucket depth/rate: MUST BE >= MTU/B */
u32 mtu;
u32 max_size;
struct qdisc_rate_table *R_tab;
struct qdisc_rate_table *P_tab;
/* Variables */
long tokens; /* Current number of B tokens */
long ptokens; /* Current number of P tokens */
psched_time_t t_c; /* Time check-point */
struct timer_list wd_timer; /* Watchdog timer */
struct Qdisc *qdisc; /* Inner qdisc, default - bfifo queue */
};
#define L2T(q,L) ((q)->R_tab->data[(L)>>(q)->R_tab->rate.cell_log])
#define L2T_P(q,L) ((q)->P_tab->data[(L)>>(q)->P_tab->rate.cell_log])
static int tbf_enqueue(struct sk_buff *skb, struct Qdisc* sch)
{
struct tbf_sched_data *q = qdisc_priv(sch);
int ret;
if (skb->len > q->max_size) {
sch->qstats.drops++;
#ifdef CONFIG_NET_CLS_POLICE
if (sch->reshape_fail == NULL || sch->reshape_fail(skb, sch))
#endif
kfree_skb(skb);
return NET_XMIT_DROP;
}
if ((ret = q->qdisc->enqueue(skb, q->qdisc)) != 0) {
sch->qstats.drops++;
return ret;
}
sch->q.qlen++;
sch->bstats.bytes += skb->len;
sch->bstats.packets++;
return 0;
}
static int tbf_requeue(struct sk_buff *skb, struct Qdisc* sch)
{
struct tbf_sched_data *q = qdisc_priv(sch);
int ret;
if ((ret = q->qdisc->ops->requeue(skb, q->qdisc)) == 0) {
sch->q.qlen++;
sch->qstats.requeues++;
}
return ret;
}
static unsigned int tbf_drop(struct Qdisc* sch)
{
struct tbf_sched_data *q = qdisc_priv(sch);
unsigned int len = 0;
if (q->qdisc->ops->drop && (len = q->qdisc->ops->drop(q->qdisc)) != 0) {
sch->q.qlen--;
sch->qstats.drops++;
}
return len;
}
static void tbf_watchdog(unsigned long arg)
{
struct Qdisc *sch = (struct Qdisc*)arg;
sch->flags &= ~TCQ_F_THROTTLED;
netif_schedule(sch->dev);
}
static struct sk_buff *tbf_dequeue(struct Qdisc* sch)
{
struct tbf_sched_data *q = qdisc_priv(sch);
struct sk_buff *skb;
skb = q->qdisc->dequeue(q->qdisc);
if (skb) {
psched_time_t now;
long toks, delay;
long ptoks = 0;
unsigned int len = skb->len;
PSCHED_GET_TIME(now);
toks = PSCHED_TDIFF_SAFE(now, q->t_c, q->buffer);
if (q->P_tab) {
ptoks = toks + q->ptokens;
if (ptoks > (long)q->mtu)
ptoks = q->mtu;
ptoks -= L2T_P(q, len);
}
toks += q->tokens;
if (toks > (long)q->buffer)
toks = q->buffer;
toks -= L2T(q, len);
if ((toks|ptoks) >= 0) {
q->t_c = now;
q->tokens = toks;
q->ptokens = ptoks;
sch->q.qlen--;
sch->flags &= ~TCQ_F_THROTTLED;
return skb;
}
delay = PSCHED_US2JIFFIE(max_t(long, -toks, -ptoks));
if (delay == 0)
delay = 1;
mod_timer(&q->wd_timer, jiffies+delay);
/* Maybe we have a shorter packet in the queue,
which can be sent now. It sounds cool,
but, however, this is wrong in principle.
We MUST NOT reorder packets under these circumstances.
Really, if we split the flow into independent
subflows, it would be a very good solution.
This is the main idea of all FQ algorithms
(cf. CSZ, HPFQ, HFSC)
*/
if (q->qdisc->ops->requeue(skb, q->qdisc) != NET_XMIT_SUCCESS) {
/* When requeue fails skb is dropped */
sch->q.qlen--;
sch->qstats.drops++;
}
sch->flags |= TCQ_F_THROTTLED;
sch->qstats.overlimits++;
}
return NULL;
}
static void tbf_reset(struct Qdisc* sch)
{
struct tbf_sched_data *q = qdisc_priv(sch);
qdisc_reset(q->qdisc);
sch->q.qlen = 0;
PSCHED_GET_TIME(q->t_c);
q->tokens = q->buffer;
q->ptokens = q->mtu;
sch->flags &= ~TCQ_F_THROTTLED;
del_timer(&q->wd_timer);
}
static struct Qdisc *tbf_create_dflt_qdisc(struct net_device *dev, u32 limit)
{
struct Qdisc *q = qdisc_create_dflt(dev, &bfifo_qdisc_ops);
struct rtattr *rta;
int ret;
if (q) {
rta = kmalloc(RTA_LENGTH(sizeof(struct tc_fifo_qopt)), GFP_KERNEL);
if (rta) {
rta->rta_type = RTM_NEWQDISC;
rta->rta_len = RTA_LENGTH(sizeof(struct tc_fifo_qopt));
((struct tc_fifo_qopt *)RTA_DATA(rta))->limit = limit;
ret = q->ops->change(q, rta);
kfree(rta);
if (ret == 0)
return q;
}
qdisc_destroy(q);
}
return NULL;
}
static int tbf_change(struct Qdisc* sch, struct rtattr *opt)
{
int err = -EINVAL;
struct tbf_sched_data *q = qdisc_priv(sch);
struct rtattr *tb[TCA_TBF_PTAB];
struct tc_tbf_qopt *qopt;
struct qdisc_rate_table *rtab = NULL;
struct qdisc_rate_table *ptab = NULL;
struct Qdisc *child = NULL;
int max_size,n;
if (rtattr_parse_nested(tb, TCA_TBF_PTAB, opt) ||
tb[TCA_TBF_PARMS-1] == NULL ||
RTA_PAYLOAD(tb[TCA_TBF_PARMS-1]) < sizeof(*qopt))
goto done;
qopt = RTA_DATA(tb[TCA_TBF_PARMS-1]);
rtab = qdisc_get_rtab(&qopt->rate, tb[TCA_TBF_RTAB-1]);
if (rtab == NULL)
goto done;
if (qopt->peakrate.rate) {
if (qopt->peakrate.rate > qopt->rate.rate)
ptab = qdisc_get_rtab(&qopt->peakrate, tb[TCA_TBF_PTAB-1]);
if (ptab == NULL)
goto done;
}
for (n = 0; n < 256; n++)
if (rtab->data[n] > qopt->buffer) break;
max_size = (n << qopt->rate.cell_log)-1;
if (ptab) {
int size;
for (n = 0; n < 256; n++)
if (ptab->data[n] > qopt->mtu) break;
size = (n << qopt->peakrate.cell_log)-1;
if (size < max_size) max_size = size;
}
if (max_size < 0)
goto done;
if (qopt->limit > 0) {
if ((child = tbf_create_dflt_qdisc(sch->dev, qopt->limit)) == NULL)
goto done;
}
sch_tree_lock(sch);
if (child)
qdisc_destroy(xchg(&q->qdisc, child));
q->limit = qopt->limit;
q->mtu = qopt->mtu;
q->max_size = max_size;
q->buffer = qopt->buffer;
q->tokens = q->buffer;
q->ptokens = q->mtu;
rtab = xchg(&q->R_tab, rtab);
ptab = xchg(&q->P_tab, ptab);
sch_tree_unlock(sch);
err = 0;
done:
if (rtab)
qdisc_put_rtab(rtab);
if (ptab)
qdisc_put_rtab(ptab);
return err;
}
static int tbf_init(struct Qdisc* sch, struct rtattr *opt)
{
struct tbf_sched_data *q = qdisc_priv(sch);
if (opt == NULL)
return -EINVAL;
PSCHED_GET_TIME(q->t_c);
init_timer(&q->wd_timer);
q->wd_timer.function = tbf_watchdog;
q->wd_timer.data = (unsigned long)sch;
q->qdisc = &noop_qdisc;
return tbf_change(sch, opt);
}
static void tbf_destroy(struct Qdisc *sch)
{
struct tbf_sched_data *q = qdisc_priv(sch);
del_timer(&q->wd_timer);
if (q->P_tab)
qdisc_put_rtab(q->P_tab);
if (q->R_tab)
qdisc_put_rtab(q->R_tab);
qdisc_destroy(q->qdisc);
}
static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb)
{
struct tbf_sched_data *q = qdisc_priv(sch);
unsigned char *b = skb->tail;
struct rtattr *rta;
struct tc_tbf_qopt opt;
rta = (struct rtattr*)b;
RTA_PUT(skb, TCA_OPTIONS, 0, NULL);
opt.limit = q->limit;
opt.rate = q->R_tab->rate;
if (q->P_tab)
opt.peakrate = q->P_tab->rate;
else
memset(&opt.peakrate, 0, sizeof(opt.peakrate));
opt.mtu = q->mtu;
opt.buffer = q->buffer;
RTA_PUT(skb, TCA_TBF_PARMS, sizeof(opt), &opt);
rta->rta_len = skb->tail - b;
return skb->len;
rtattr_failure:
skb_trim(skb, b - skb->data);
return -1;
}
static int tbf_dump_class(struct Qdisc *sch, unsigned long cl,
struct sk_buff *skb, struct tcmsg *tcm)
{
struct tbf_sched_data *q = qdisc_priv(sch);
if (cl != 1) /* only one class */
return -ENOENT;
tcm->tcm_handle |= TC_H_MIN(1);
tcm->tcm_info = q->qdisc->handle;
return 0;
}
static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
struct Qdisc **old)
{
struct tbf_sched_data *q = qdisc_priv(sch);
if (new == NULL)
new = &noop_qdisc;
sch_tree_lock(sch);
*old = xchg(&q->qdisc, new);
qdisc_reset(*old);
sch->q.qlen = 0;
sch_tree_unlock(sch);
return 0;
}
static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg)
{
struct tbf_sched_data *q = qdisc_priv(sch);
return q->qdisc;
}
static unsigned long tbf_get(struct Qdisc *sch, u32 classid)
{
return 1;
}
static void tbf_put(struct Qdisc *sch, unsigned long arg)
{
}
static int tbf_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
struct rtattr **tca, unsigned long *arg)
{
return -ENOSYS;
}
static int tbf_delete(struct Qdisc *sch, unsigned long arg)
{
return -ENOSYS;
}
static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker)
{
if (!walker->stop) {
if (walker->count >= walker->skip)
if (walker->fn(sch, 1, walker) < 0) {
walker->stop = 1;
return;
}
walker->count++;
}
}
static struct tcf_proto **tbf_find_tcf(struct Qdisc *sch, unsigned long cl)
{
return NULL;
}
static struct Qdisc_class_ops tbf_class_ops =
{
.graft = tbf_graft,
.leaf = tbf_leaf,
.get = tbf_get,
.put = tbf_put,
.change = tbf_change_class,
.delete = tbf_delete,
.walk = tbf_walk,
.tcf_chain = tbf_find_tcf,
.dump = tbf_dump_class,
};
static struct Qdisc_ops tbf_qdisc_ops = {
.next = NULL,
.cl_ops = &tbf_class_ops,
.id = "tbf",
.priv_size = sizeof(struct tbf_sched_data),
.enqueue = tbf_enqueue,
.dequeue = tbf_dequeue,
.requeue = tbf_requeue,
.drop = tbf_drop,
.init = tbf_init,
.reset = tbf_reset,
.destroy = tbf_destroy,
.change = tbf_change,
.dump = tbf_dump,
.owner = THIS_MODULE,
};
static int __init tbf_module_init(void)
{
return register_qdisc(&tbf_qdisc_ops);
}
static void __exit tbf_module_exit(void)
{
unregister_qdisc(&tbf_qdisc_ops);
}
module_init(tbf_module_init)
module_exit(tbf_module_exit)
MODULE_LICENSE("GPL");