forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mxs-dcp.c
1102 lines (883 loc) · 26.5 KB
/
mxs-dcp.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Freescale i.MX23/i.MX28 Data Co-Processor driver
*
* Copyright (C) 2013 Marek Vasut <[email protected]>
*
* The code contained herein is licensed under the GNU General Public
* License. You may obtain a copy of the GNU General Public License
* Version 2 or later at the following locations:
*
* http://www.opensource.org/licenses/gpl-license.html
* http://www.gnu.org/copyleft/gpl.html
*/
#include <linux/crypto.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/stmp_device.h>
#include <crypto/aes.h>
#include <crypto/sha.h>
#include <crypto/internal/hash.h>
#define DCP_MAX_CHANS 4
#define DCP_BUF_SZ PAGE_SIZE
#define DCP_ALIGNMENT 64
/* DCP DMA descriptor. */
struct dcp_dma_desc {
uint32_t next_cmd_addr;
uint32_t control0;
uint32_t control1;
uint32_t source;
uint32_t destination;
uint32_t size;
uint32_t payload;
uint32_t status;
};
/* Coherent aligned block for bounce buffering. */
struct dcp_coherent_block {
uint8_t aes_in_buf[DCP_BUF_SZ];
uint8_t aes_out_buf[DCP_BUF_SZ];
uint8_t sha_in_buf[DCP_BUF_SZ];
uint8_t aes_key[2 * AES_KEYSIZE_128];
struct dcp_dma_desc desc[DCP_MAX_CHANS];
};
struct dcp {
struct device *dev;
void __iomem *base;
uint32_t caps;
struct dcp_coherent_block *coh;
struct completion completion[DCP_MAX_CHANS];
struct mutex mutex[DCP_MAX_CHANS];
struct task_struct *thread[DCP_MAX_CHANS];
struct crypto_queue queue[DCP_MAX_CHANS];
};
enum dcp_chan {
DCP_CHAN_HASH_SHA = 0,
DCP_CHAN_CRYPTO = 2,
};
struct dcp_async_ctx {
/* Common context */
enum dcp_chan chan;
uint32_t fill;
/* SHA Hash-specific context */
struct mutex mutex;
uint32_t alg;
unsigned int hot:1;
/* Crypto-specific context */
struct crypto_ablkcipher *fallback;
unsigned int key_len;
uint8_t key[AES_KEYSIZE_128];
};
struct dcp_aes_req_ctx {
unsigned int enc:1;
unsigned int ecb:1;
};
struct dcp_sha_req_ctx {
unsigned int init:1;
unsigned int fini:1;
};
/*
* There can even be only one instance of the MXS DCP due to the
* design of Linux Crypto API.
*/
static struct dcp *global_sdcp;
/* DCP register layout. */
#define MXS_DCP_CTRL 0x00
#define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23)
#define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22)
#define MXS_DCP_STAT 0x10
#define MXS_DCP_STAT_CLR 0x18
#define MXS_DCP_STAT_IRQ_MASK 0xf
#define MXS_DCP_CHANNELCTRL 0x20
#define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff
#define MXS_DCP_CAPABILITY1 0x40
#define MXS_DCP_CAPABILITY1_SHA256 (4 << 16)
#define MXS_DCP_CAPABILITY1_SHA1 (1 << 16)
#define MXS_DCP_CAPABILITY1_AES128 (1 << 0)
#define MXS_DCP_CONTEXT 0x50
#define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40))
#define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40))
#define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40))
#define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40))
/* DMA descriptor bits. */
#define MXS_DCP_CONTROL0_HASH_TERM (1 << 13)
#define MXS_DCP_CONTROL0_HASH_INIT (1 << 12)
#define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11)
#define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8)
#define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9)
#define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6)
#define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5)
#define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1)
#define MXS_DCP_CONTROL0_INTERRUPT (1 << 0)
#define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16)
#define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16)
#define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4)
#define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4)
#define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0)
static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
{
struct dcp *sdcp = global_sdcp;
const int chan = actx->chan;
uint32_t stat;
unsigned long ret;
struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
DMA_TO_DEVICE);
reinit_completion(&sdcp->completion[chan]);
/* Clear status register. */
writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
/* Load the DMA descriptor. */
writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
/* Increment the semaphore to start the DMA transfer. */
writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
ret = wait_for_completion_timeout(&sdcp->completion[chan],
msecs_to_jiffies(1000));
if (!ret) {
dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
chan, readl(sdcp->base + MXS_DCP_STAT));
return -ETIMEDOUT;
}
stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
if (stat & 0xff) {
dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
chan, stat);
return -EINVAL;
}
dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
return 0;
}
/*
* Encryption (AES128)
*/
static int mxs_dcp_run_aes(struct dcp_async_ctx *actx,
struct ablkcipher_request *req, int init)
{
struct dcp *sdcp = global_sdcp;
struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
int ret;
dma_addr_t key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
2 * AES_KEYSIZE_128,
DMA_TO_DEVICE);
dma_addr_t src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
DCP_BUF_SZ, DMA_TO_DEVICE);
dma_addr_t dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
DCP_BUF_SZ, DMA_FROM_DEVICE);
/* Fill in the DMA descriptor. */
desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
MXS_DCP_CONTROL0_INTERRUPT |
MXS_DCP_CONTROL0_ENABLE_CIPHER;
/* Payload contains the key. */
desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
if (rctx->enc)
desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
if (init)
desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
if (rctx->ecb)
desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
else
desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
desc->next_cmd_addr = 0;
desc->source = src_phys;
desc->destination = dst_phys;
desc->size = actx->fill;
desc->payload = key_phys;
desc->status = 0;
ret = mxs_dcp_start_dma(actx);
dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
DMA_TO_DEVICE);
dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
return ret;
}
static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
{
struct dcp *sdcp = global_sdcp;
struct ablkcipher_request *req = ablkcipher_request_cast(arq);
struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
struct scatterlist *dst = req->dst;
struct scatterlist *src = req->src;
const int nents = sg_nents(req->src);
const int out_off = DCP_BUF_SZ;
uint8_t *in_buf = sdcp->coh->aes_in_buf;
uint8_t *out_buf = sdcp->coh->aes_out_buf;
uint8_t *out_tmp, *src_buf, *dst_buf = NULL;
uint32_t dst_off = 0;
uint8_t *key = sdcp->coh->aes_key;
int ret = 0;
int split = 0;
unsigned int i, len, clen, rem = 0;
int init = 0;
actx->fill = 0;
/* Copy the key from the temporary location. */
memcpy(key, actx->key, actx->key_len);
if (!rctx->ecb) {
/* Copy the CBC IV just past the key. */
memcpy(key + AES_KEYSIZE_128, req->info, AES_KEYSIZE_128);
/* CBC needs the INIT set. */
init = 1;
} else {
memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
}
for_each_sg(req->src, src, nents, i) {
src_buf = sg_virt(src);
len = sg_dma_len(src);
do {
if (actx->fill + len > out_off)
clen = out_off - actx->fill;
else
clen = len;
memcpy(in_buf + actx->fill, src_buf, clen);
len -= clen;
src_buf += clen;
actx->fill += clen;
/*
* If we filled the buffer or this is the last SG,
* submit the buffer.
*/
if (actx->fill == out_off || sg_is_last(src)) {
ret = mxs_dcp_run_aes(actx, req, init);
if (ret)
return ret;
init = 0;
out_tmp = out_buf;
while (dst && actx->fill) {
if (!split) {
dst_buf = sg_virt(dst);
dst_off = 0;
}
rem = min(sg_dma_len(dst) - dst_off,
actx->fill);
memcpy(dst_buf + dst_off, out_tmp, rem);
out_tmp += rem;
dst_off += rem;
actx->fill -= rem;
if (dst_off == sg_dma_len(dst)) {
dst = sg_next(dst);
split = 0;
} else {
split = 1;
}
}
}
} while (len);
}
return ret;
}
static int dcp_chan_thread_aes(void *data)
{
struct dcp *sdcp = global_sdcp;
const int chan = DCP_CHAN_CRYPTO;
struct crypto_async_request *backlog;
struct crypto_async_request *arq;
int ret;
do {
__set_current_state(TASK_INTERRUPTIBLE);
mutex_lock(&sdcp->mutex[chan]);
backlog = crypto_get_backlog(&sdcp->queue[chan]);
arq = crypto_dequeue_request(&sdcp->queue[chan]);
mutex_unlock(&sdcp->mutex[chan]);
if (backlog)
backlog->complete(backlog, -EINPROGRESS);
if (arq) {
ret = mxs_dcp_aes_block_crypt(arq);
arq->complete(arq, ret);
continue;
}
schedule();
} while (!kthread_should_stop());
return 0;
}
static int mxs_dcp_block_fallback(struct ablkcipher_request *req, int enc)
{
struct crypto_tfm *tfm =
crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req));
struct dcp_async_ctx *ctx = crypto_ablkcipher_ctx(
crypto_ablkcipher_reqtfm(req));
int ret;
ablkcipher_request_set_tfm(req, ctx->fallback);
if (enc)
ret = crypto_ablkcipher_encrypt(req);
else
ret = crypto_ablkcipher_decrypt(req);
ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(tfm));
return ret;
}
static int mxs_dcp_aes_enqueue(struct ablkcipher_request *req, int enc, int ecb)
{
struct dcp *sdcp = global_sdcp;
struct crypto_async_request *arq = &req->base;
struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
int ret;
if (unlikely(actx->key_len != AES_KEYSIZE_128))
return mxs_dcp_block_fallback(req, enc);
rctx->enc = enc;
rctx->ecb = ecb;
actx->chan = DCP_CHAN_CRYPTO;
mutex_lock(&sdcp->mutex[actx->chan]);
ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
mutex_unlock(&sdcp->mutex[actx->chan]);
wake_up_process(sdcp->thread[actx->chan]);
return -EINPROGRESS;
}
static int mxs_dcp_aes_ecb_decrypt(struct ablkcipher_request *req)
{
return mxs_dcp_aes_enqueue(req, 0, 1);
}
static int mxs_dcp_aes_ecb_encrypt(struct ablkcipher_request *req)
{
return mxs_dcp_aes_enqueue(req, 1, 1);
}
static int mxs_dcp_aes_cbc_decrypt(struct ablkcipher_request *req)
{
return mxs_dcp_aes_enqueue(req, 0, 0);
}
static int mxs_dcp_aes_cbc_encrypt(struct ablkcipher_request *req)
{
return mxs_dcp_aes_enqueue(req, 1, 0);
}
static int mxs_dcp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
unsigned int len)
{
struct dcp_async_ctx *actx = crypto_ablkcipher_ctx(tfm);
unsigned int ret;
/*
* AES 128 is supposed by the hardware, store key into temporary
* buffer and exit. We must use the temporary buffer here, since
* there can still be an operation in progress.
*/
actx->key_len = len;
if (len == AES_KEYSIZE_128) {
memcpy(actx->key, key, len);
return 0;
}
/* Check if the key size is supported by kernel at all. */
if (len != AES_KEYSIZE_192 && len != AES_KEYSIZE_256) {
tfm->base.crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
return -EINVAL;
}
/*
* If the requested AES key size is not supported by the hardware,
* but is supported by in-kernel software implementation, we use
* software fallback.
*/
actx->fallback->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
actx->fallback->base.crt_flags |=
tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK;
ret = crypto_ablkcipher_setkey(actx->fallback, key, len);
if (!ret)
return 0;
tfm->base.crt_flags &= ~CRYPTO_TFM_RES_MASK;
tfm->base.crt_flags |=
actx->fallback->base.crt_flags & CRYPTO_TFM_RES_MASK;
return ret;
}
static int mxs_dcp_aes_fallback_init(struct crypto_tfm *tfm)
{
const char *name = crypto_tfm_alg_name(tfm);
const uint32_t flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK;
struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm);
struct crypto_ablkcipher *blk;
blk = crypto_alloc_ablkcipher(name, 0, flags);
if (IS_ERR(blk))
return PTR_ERR(blk);
actx->fallback = blk;
tfm->crt_ablkcipher.reqsize = sizeof(struct dcp_aes_req_ctx);
return 0;
}
static void mxs_dcp_aes_fallback_exit(struct crypto_tfm *tfm)
{
struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm);
crypto_free_ablkcipher(actx->fallback);
actx->fallback = NULL;
}
/*
* Hashing (SHA1/SHA256)
*/
static int mxs_dcp_run_sha(struct ahash_request *req)
{
struct dcp *sdcp = global_sdcp;
int ret;
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
dma_addr_t digest_phys = 0;
dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
DCP_BUF_SZ, DMA_TO_DEVICE);
/* Fill in the DMA descriptor. */
desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
MXS_DCP_CONTROL0_INTERRUPT |
MXS_DCP_CONTROL0_ENABLE_HASH;
if (rctx->init)
desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
desc->control1 = actx->alg;
desc->next_cmd_addr = 0;
desc->source = buf_phys;
desc->destination = 0;
desc->size = actx->fill;
desc->payload = 0;
desc->status = 0;
/* Set HASH_TERM bit for last transfer block. */
if (rctx->fini) {
digest_phys = dma_map_single(sdcp->dev, req->result,
halg->digestsize, DMA_FROM_DEVICE);
desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
desc->payload = digest_phys;
}
ret = mxs_dcp_start_dma(actx);
if (rctx->fini)
dma_unmap_single(sdcp->dev, digest_phys, halg->digestsize,
DMA_FROM_DEVICE);
dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
return ret;
}
static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
{
struct dcp *sdcp = global_sdcp;
struct ahash_request *req = ahash_request_cast(arq);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
const int nents = sg_nents(req->src);
uint8_t *in_buf = sdcp->coh->sha_in_buf;
uint8_t *src_buf;
struct scatterlist *src;
unsigned int i, len, clen;
int ret;
int fin = rctx->fini;
if (fin)
rctx->fini = 0;
for_each_sg(req->src, src, nents, i) {
src_buf = sg_virt(src);
len = sg_dma_len(src);
do {
if (actx->fill + len > DCP_BUF_SZ)
clen = DCP_BUF_SZ - actx->fill;
else
clen = len;
memcpy(in_buf + actx->fill, src_buf, clen);
len -= clen;
src_buf += clen;
actx->fill += clen;
/*
* If we filled the buffer and still have some
* more data, submit the buffer.
*/
if (len && actx->fill == DCP_BUF_SZ) {
ret = mxs_dcp_run_sha(req);
if (ret)
return ret;
actx->fill = 0;
rctx->init = 0;
}
} while (len);
}
if (fin) {
rctx->fini = 1;
/* Submit whatever is left. */
if (!req->result)
return -EINVAL;
ret = mxs_dcp_run_sha(req);
if (ret)
return ret;
actx->fill = 0;
/* For some reason, the result is flipped. */
for (i = 0; i < halg->digestsize / 2; i++) {
swap(req->result[i],
req->result[halg->digestsize - i - 1]);
}
}
return 0;
}
static int dcp_chan_thread_sha(void *data)
{
struct dcp *sdcp = global_sdcp;
const int chan = DCP_CHAN_HASH_SHA;
struct crypto_async_request *backlog;
struct crypto_async_request *arq;
struct dcp_sha_req_ctx *rctx;
struct ahash_request *req;
int ret, fini;
do {
__set_current_state(TASK_INTERRUPTIBLE);
mutex_lock(&sdcp->mutex[chan]);
backlog = crypto_get_backlog(&sdcp->queue[chan]);
arq = crypto_dequeue_request(&sdcp->queue[chan]);
mutex_unlock(&sdcp->mutex[chan]);
if (backlog)
backlog->complete(backlog, -EINPROGRESS);
if (arq) {
req = ahash_request_cast(arq);
rctx = ahash_request_ctx(req);
ret = dcp_sha_req_to_buf(arq);
fini = rctx->fini;
arq->complete(arq, ret);
if (!fini)
continue;
}
schedule();
} while (!kthread_should_stop());
return 0;
}
static int dcp_sha_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
/*
* Start hashing session. The code below only inits the
* hashing session context, nothing more.
*/
memset(actx, 0, sizeof(*actx));
if (strcmp(halg->base.cra_name, "sha1") == 0)
actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
else
actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
actx->fill = 0;
actx->hot = 0;
actx->chan = DCP_CHAN_HASH_SHA;
mutex_init(&actx->mutex);
return 0;
}
static int dcp_sha_update_fx(struct ahash_request *req, int fini)
{
struct dcp *sdcp = global_sdcp;
struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
int ret;
/*
* Ignore requests that have no data in them and are not
* the trailing requests in the stream of requests.
*/
if (!req->nbytes && !fini)
return 0;
mutex_lock(&actx->mutex);
rctx->fini = fini;
if (!actx->hot) {
actx->hot = 1;
rctx->init = 1;
}
mutex_lock(&sdcp->mutex[actx->chan]);
ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
mutex_unlock(&sdcp->mutex[actx->chan]);
wake_up_process(sdcp->thread[actx->chan]);
mutex_unlock(&actx->mutex);
return -EINPROGRESS;
}
static int dcp_sha_update(struct ahash_request *req)
{
return dcp_sha_update_fx(req, 0);
}
static int dcp_sha_final(struct ahash_request *req)
{
ahash_request_set_crypt(req, NULL, req->result, 0);
req->nbytes = 0;
return dcp_sha_update_fx(req, 1);
}
static int dcp_sha_finup(struct ahash_request *req)
{
return dcp_sha_update_fx(req, 1);
}
static int dcp_sha_digest(struct ahash_request *req)
{
int ret;
ret = dcp_sha_init(req);
if (ret)
return ret;
return dcp_sha_finup(req);
}
static int dcp_sha_cra_init(struct crypto_tfm *tfm)
{
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct dcp_sha_req_ctx));
return 0;
}
static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
{
}
/* AES 128 ECB and AES 128 CBC */
static struct crypto_alg dcp_aes_algs[] = {
{
.cra_name = "ecb(aes)",
.cra_driver_name = "ecb-aes-dcp",
.cra_priority = 400,
.cra_alignmask = 15,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_init = mxs_dcp_aes_fallback_init,
.cra_exit = mxs_dcp_aes_fallback_exit,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct dcp_async_ctx),
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_u = {
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = mxs_dcp_aes_setkey,
.encrypt = mxs_dcp_aes_ecb_encrypt,
.decrypt = mxs_dcp_aes_ecb_decrypt
},
},
}, {
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-dcp",
.cra_priority = 400,
.cra_alignmask = 15,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_init = mxs_dcp_aes_fallback_init,
.cra_exit = mxs_dcp_aes_fallback_exit,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct dcp_async_ctx),
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_u = {
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = mxs_dcp_aes_setkey,
.encrypt = mxs_dcp_aes_cbc_encrypt,
.decrypt = mxs_dcp_aes_cbc_decrypt,
.ivsize = AES_BLOCK_SIZE,
},
},
},
};
/* SHA1 */
static struct ahash_alg dcp_sha1_alg = {
.init = dcp_sha_init,
.update = dcp_sha_update,
.final = dcp_sha_final,
.finup = dcp_sha_finup,
.digest = dcp_sha_digest,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.base = {
.cra_name = "sha1",
.cra_driver_name = "sha1-dcp",
.cra_priority = 400,
.cra_alignmask = 63,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct dcp_async_ctx),
.cra_module = THIS_MODULE,
.cra_init = dcp_sha_cra_init,
.cra_exit = dcp_sha_cra_exit,
},
},
};
/* SHA256 */
static struct ahash_alg dcp_sha256_alg = {
.init = dcp_sha_init,
.update = dcp_sha_update,
.final = dcp_sha_final,
.finup = dcp_sha_finup,
.digest = dcp_sha_digest,
.halg = {
.digestsize = SHA256_DIGEST_SIZE,
.base = {
.cra_name = "sha256",
.cra_driver_name = "sha256-dcp",
.cra_priority = 400,
.cra_alignmask = 63,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct dcp_async_ctx),
.cra_module = THIS_MODULE,
.cra_init = dcp_sha_cra_init,
.cra_exit = dcp_sha_cra_exit,
},
},
};
static irqreturn_t mxs_dcp_irq(int irq, void *context)
{
struct dcp *sdcp = context;
uint32_t stat;
int i;
stat = readl(sdcp->base + MXS_DCP_STAT);
stat &= MXS_DCP_STAT_IRQ_MASK;
if (!stat)
return IRQ_NONE;
/* Clear the interrupts. */
writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
/* Complete the DMA requests that finished. */
for (i = 0; i < DCP_MAX_CHANS; i++)
if (stat & (1 << i))
complete(&sdcp->completion[i]);
return IRQ_HANDLED;
}
static int mxs_dcp_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct dcp *sdcp = NULL;
int i, ret;
struct resource *iores;
int dcp_vmi_irq, dcp_irq;
if (global_sdcp) {
dev_err(dev, "Only one DCP instance allowed!\n");
return -ENODEV;
}
iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
dcp_vmi_irq = platform_get_irq(pdev, 0);
if (dcp_vmi_irq < 0)
return dcp_vmi_irq;
dcp_irq = platform_get_irq(pdev, 1);
if (dcp_irq < 0)
return dcp_irq;
sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
if (!sdcp)
return -ENOMEM;
sdcp->dev = dev;
sdcp->base = devm_ioremap_resource(dev, iores);
if (IS_ERR(sdcp->base))
return PTR_ERR(sdcp->base);
ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
"dcp-vmi-irq", sdcp);
if (ret) {
dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
return ret;
}
ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
"dcp-irq", sdcp);
if (ret) {
dev_err(dev, "Failed to claim DCP IRQ!\n");
return ret;
}
/* Allocate coherent helper block. */
sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT,
GFP_KERNEL);
if (!sdcp->coh)
return -ENOMEM;
/* Re-align the structure so it fits the DCP constraints. */
sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT);
/* Restart the DCP block. */
ret = stmp_reset_block(sdcp->base);
if (ret)
return ret;
/* Initialize control register. */
writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
sdcp->base + MXS_DCP_CTRL);
/* Enable all DCP DMA channels. */
writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
sdcp->base + MXS_DCP_CHANNELCTRL);
/*
* We do not enable context switching. Give the context buffer a
* pointer to an illegal address so if context switching is
* inadvertantly enabled, the DCP will return an error instead of
* trashing good memory. The DCP DMA cannot access ROM, so any ROM
* address will do.
*/
writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
for (i = 0; i < DCP_MAX_CHANS; i++)
writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
global_sdcp = sdcp;
platform_set_drvdata(pdev, sdcp);
for (i = 0; i < DCP_MAX_CHANS; i++) {
mutex_init(&sdcp->mutex[i]);
init_completion(&sdcp->completion[i]);
crypto_init_queue(&sdcp->queue[i], 50);
}
/* Create the SHA and AES handler threads. */
sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
NULL, "mxs_dcp_chan/sha");
if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
dev_err(dev, "Error starting SHA thread!\n");
return PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
}
sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,