forked from sxyu/pixel-nerf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
default.conf
94 lines (85 loc) · 2.04 KB
/
default.conf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# Single-view only base model
# (Not used in experiments; resnet_fine_mv.conf inherits)
model {
# Condition on local encoder
use_encoder = True
# Condition also on a global encoder?
use_global_encoder = False
# Use xyz input instead of just z
# (didn't ablate)
use_xyz = True
# Canonical space xyz (default view space)
canon_xyz = False
# Positional encoding
use_code = True
code {
num_freqs = 6
freq_factor = 1.5
include_input = True
}
# View directions
use_viewdirs = True
# Apply pos. enc. to viewdirs?
use_code_viewdirs = False
# MLP architecture
mlp_coarse {
type = resnet # Can change to mlp
n_blocks = 3
d_hidden = 512
}
mlp_fine {
type = resnet
n_blocks = 3
d_hidden = 512
}
# Encoder architecture
encoder {
backbone = resnet34
pretrained = True
num_layers = 4
}
}
renderer {
n_coarse = 64
n_fine = 32
# Try using expected depth sample
n_fine_depth = 16
# Noise to add to depth sample
depth_std = 0.01
# Decay schedule, not used
sched = []
# White background color (false : black)
white_bkgd = True
}
loss {
# RGB losses coarse/fine
rgb {
use_l1 = False
}
rgb_fine {
use_l1 = False
}
# Alpha regularization (disabled in final version)
alpha {
# lambda_alpha = 0.0001
lambda_alpha = 0.0
clamp_alpha = 100
init_epoch = 5
}
# Coarse/fine weighting (nerf = equal)
lambda_coarse = 1.0 # loss = lambda_coarse * loss_coarse + loss_fine
lambda_fine = 1.0 # loss = lambda_coarse * loss_coarse + loss_fine
}
train {
# Training
print_interval = 2
save_interval = 50
vis_interval = 100
eval_interval = 50
# Accumulating gradients. Not really recommended.
# 1 = disable
accu_grad = 1
# Number of times to repeat dataset per 'epoch'
# Useful if dataset is extremely small, like DTU
num_epoch_repeats = 1
}