-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathresonatorFit.py
404 lines (322 loc) · 16.6 KB
/
resonatorFit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
# Copyright (C) 2010 James Wenner
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
### BEGIN NODE INFO
[info]
name = Resonator Fit
version = 0.5.2
description = Fits resonator data to find Q
[startup]
cmdline = %PYTHON% %FILE%
timeout = 20
[shutdown]
message = 987654321
timeout = 5
### END NODE INFO
"""
#Import the LabradServer superclass
from labrad.server import LabradServer, setting
from labrad import util
#Import some math functions
import numpy
from numpy import pi, sqrt, exp, array
from scipy import optimize, interpolate
from matplotlib import pyplot
from twisted.internet import defer, reactor
from twisted.internet.defer import inlineCallbacks, returnValue
from time import sleep
class ResonatorFit(LabradServer):
"""This server fits resonator data to determine Q, f0, etc."""
name = "Resonator Fit"
@inlineCallbacks
def open_s21(self, sparam, dir, filenum):
#Opens a data vault file and pulls out the S21 data as an array in the format (frequency, complex S21).
dv=self.client.data_vault
#Goes to the correct directory.
yield dv.cd([''])
yield dv.cd(dir)
yield dv.open(filenum)
datafromfileraw = yield dv.get(10**3)
newdata = numpy.asarray(datafromfileraw)
nrows,ncols = newdata.shape
datafromfile=numpy.empty([0,ncols])
while (nrows>0.5 and ncols>0.5):
datafromfile= numpy.concatenate((datafromfile,newdata),axis=0)
datafromfileraw = yield dv.get(10**3)
newdata = numpy.asarray(datafromfileraw)
nrows,ncols = newdata.shape
#Saves S21 data into numpy array. If no S21 data, then displays error and quits program.
varsraw = yield dv.variables()
vars = varsraw[1]
magcol = -1
phasecol = -1
for strnum in range(len(vars)):
if vars[strnum][1] == sparam:
if vars[strnum][0] == 'Magnitude':
magcol = strnum+1
break
else:
raise ValueError, 'Invalid S-parameter'
return
for strnum in range(len(vars)):
if vars[strnum][1] == sparam:
if vars[strnum][0] == 'Phase':
phasecol = strnum+1
break
else:
raise ValueError, 'Invalid S-parameter'
return
mag = 10**(datafromfile[:,magcol]/20.)
complexval = mag*exp(1j*datafromfile[:,phasecol])
data = array([datafromfile[:,0],complexval])
returnValue(data)
def thru_residues(self,parm,z,frequency):
#Fit function for through-resonators (resonator between two coupling capacitors)
return abs(z + exp(1j*parm[0])*(1+parm[1]/parm[2])**(-1)*(1+2j*(1/parm[1]+1/parm[2])**(-1)*(frequency-parm[3])*parm[3]**(-1))**(-1) - (parm[4]+1j*parm[5]))
@inlineCallbacks
def calibrate_data(self, sparam, datain, cal, range, background):
#Calibrate input data using calibration file calfile in caldir
# If only wanting to fit a limited range, select data with frequencies in this range
if range[0]:
frangein = datain[0]
frangecut = numpy.logical_and(frangein>range[1],frangein<range[2])
check = False
for item in frangecut:
check=numpy.logical_or(check,item)
if check:
frange = frangein[frangecut]
zrange = datain[1][frangecut]
datain = array([frange,zrange])
# Calibrate data if desired
if cal[0]:
# Open calibration file
calopen = yield self.open_s21(sparam,cal[1],cal[2])
if (datain[0].min()>=calopen[0].min() and datain[0].max()<=calopen[0].max()):
calfreqfull = calopen[0]
calcut = numpy.logical_and(calfreqfull>=(0.9*datain[0].min()),calfreqfull<=(1.1*datain[0].max()))
calinterp = interpolate.interp1d(calopen[0][calcut],calopen[1][calcut])
caldata = array([datain[0],datain[1]/calinterp(datain[0])])
else:
caldata = datain
else:
caldata = datain
# Background subtraction if desired
if background[0]:
frange = array([background[1],background[2]])
order = background[3]
s21 = caldata
f = s21[0].real
s = s21[1]
sr = s.real
si = s.imag
# Determine which indices (given by fcut) are within the background subraction range
fcut = numpy.logical_and(f>frange[0],f<frange[1])
if fcut[0]==True and fcut[-1]==True:
order = 1
if fcut[0] == True:
fcut[0] = False
if fcut[-1] == True:
fcut[-1] = False
fout = numpy.logical_not(fcut)
# Fit real part of s21 and subract from actual (calibrated) data
polyr = numpy.polyfit(f[fout],sr[fout],order)
srfit = numpy.polyval(polyr,f)
# Fit imaginary part of s21 and subract from actual (calibrated) data
polyi = numpy.polyfit(f[fout],si[fout],order)
sifit = numpy.polyval(polyi,f)
# Combine real & imag parts
sfit = srfit + 1j * sifit
s21out = s-sfit
# Save data with background subtraction as the data to be returned
dataout = [array([f[fcut],s21out[fcut]]),array([f,s,sfit,s21out])]
else:
dataout = [caldata]
returnValue(dataout)
def resonant_fit(self, frequency, z, shunt):
#Fits a single calibrated S21 trace."""
# The following calculates the center of the resonance in the complex plane.
# The basic idea is to find the mean of the max and the min of both the realz
# and imagz. This would give the center of the circle if this were a true
# circle. However, since the resonance is not a circle we find the center by
# rotating the resonance by an angle, finding the mean of the max and the min
# of both the realz and imagz of the rotated circle, then rotating this new
# point back to the original orientation. Finally, the middle of the resonance
# is given by finding the mean of all these rotated back ave max min values.
# Note: we only need to rotate a quarter of a turn because anything over
# that would be redundant.
if shunt:
zold = z
z = zold -1
steps = 100
centerpoints = array(range(steps),dtype=complex)
for ang in range(steps):
rotation = exp((2j * pi * (ang+1) / steps) / 4) # the 4 here is for a quarter turn
zrot = rotation*z
re = (zrot.real.max() + zrot.real.min()) / 2.
im = (zrot.imag.max() + zrot.imag.min()) / 2.
centerpoints[ang] = complex(re,im) / rotation # here the new center point is rotated back
center=centerpoints.mean();
# Finding an estimate for the diameter of a circle that would fit the
# resonance data
diameter = 2 * abs(z - center).mean()
# Finding the stray coupling
# First a rough estimate of the stray is found by averaging all the points,
# utilizing the fact that most of the points are located near the origin.
# Then, a unit vector A is created that points from the center to the stray
# Finally, the stray is found by taking the point at the tip of a vector
# from the center, the length of the diameter, in the direction of A.
stray = z.mean()
A = (stray - center) / abs(center - stray)
stray = center + A * diameter / 2
# This finds an aproximation to the resonant frequncy located at an angle of zero
# and the frequency of the 3dB points which are located at pi/2 and -pi/2.
# We also calculate an aproximatin for Q from John's paper deltaOmega/Omega0 = 1/Q
angles = numpy.angle((center - z) / A)
# anglesmid = numpy.logical_and(angles>-pi/4,angles<pi/4)
# fmid = numpy.median(frequency[anglesmid])
anglesrange = numpy.logical_and(angles>-2,angles<2)
freqinterp = frequency[anglesrange]
anginterp = angles[anglesrange]
freqplus = numpy.median(interpolate.sproot(interpolate.splrep(freqinterp,anginterp-(pi/2))))
freqneg = numpy.median(interpolate.sproot(interpolate.splrep(freqinterp,anginterp-(-pi/2))))
f0 = numpy.median(interpolate.sproot(interpolate.splrep(freqinterp,anginterp)))
Q = f0 / (freqneg - freqplus)
# For the fitting function we will need some other quantaties, namely Qc and
# Q0. From John's paper, 1/Q = R0(1/R + 1/Rc), Qc = Rc/R0, and d = 1/(1 + Rc/R).
# Combining these gives the result Qc = Q/d.
Qc = Q / diameter
# To find Q0 we have the equation from John's paper 1/Qi = 1/Q - 1/Qc. Now
# with the result we just found for Qc, we have:
Qi = Q / (1 - diameter)
# From the quantaties determined above, we can determine a guess function
# for the parameters of a function to be fit, which we will construct shortly
angleA = numpy.angle(A)
guess = array([angleA,Qc,Qi,f0,stray.real,stray.imag])
# From John's paper s21 = -1/(1+Rc/R) * 1/(1+i*2*Q*(f-f0)/f0 ). However, this
# is for the ideal case. In our case, we have stray coupling (origin shift)
# and a rotation of the curve. Putting these factors in we obtain
# s21 = -exp(i*theta)/(1+Rc/R) * 1/( 1+i2Q(f-f0)/f0 ) + stray. We note
# that Rc/R = Qc/Qi and Q = (1/Qc + 1/Qi)^(-1) and we obtain the following
# s21 = -exp(i*theta)/(1+Qc/Qi) * 1/( 1+i*2*(1/Qc + 1/Qi)^(-1)*(f-f0)/f0 ) + stray
# Now, to form a minizable quantity we take minimize the sum of the squares
# of the quantity (s21 measured - s21 as defined above)
# For the least squares function we will use to find a fit, we will need to
# create a vector of the parameters to be minimized. Thus, use for our
# variables the following elements of a vector "parm" with the following
# identification
# parm[0] is theta
# parm[1]is Qc
# parm[2] is Qi
# parm[3] is f0
# parm[4]+j*parm[5] is stray
# Thus we need to minimize the following
least = optimize.leastsq(self.thru_residues,guess,args=(z,frequency),full_output=True)
lsparm = least[0]
nparm = 6
rsd=(least[2]["fvec"]**2).sum()/(len(frequency)-nparm)
covar = sqrt(rsd*numpy.diag(least[1])).real
# # The variables are all reassigned to the fit values
theta = lsparm[0]
Qc = lsparm[1]
Qi = lsparm[2]
f0 = lsparm[3]
strayRe = lsparm[4]
strayIm = lsparm[5]
Q = (1/Qc+1/Qi)**-1
fit = array([theta, Qc, Qi, Q, f0, strayRe, strayIm])
thetaerror = covar[0]
Qcerror = covar[1]
Qierror = covar[2]
f0error = covar[3]
strayerrorRe = covar[4]
strayerrorIm = covar[5]
Qerror = (1/(1/Qi+1/Qc)**2)*(Qcerror/Qc**2+Qierror/Qi**2)
fiterror = array([thetaerror,Qcerror,Qierror,Qerror,f0error,strayerrorRe,strayerrorIm])
# # We now calculate the max power transmitted on resonance by sampling 500
# # point of the fitting function, converting the voltage to power, and
# # finding the maximum of these points.
nPoints = 500
f = numpy.linspace(frequency[0],frequency[-1],nPoints)
if shunt:
maxpower_c = (20 * numpy.log10(abs(1-exp(1j*theta)/(1+Qc/Qi) * 1./( 1 + 2j*(1/Qc + 1/Qi)**(-1) * (f - f0)/f0 )))).max()
else:
maxpower_c = (20 * numpy.log10(abs(-exp(1j*theta)/(1+Qc/Qi) * 1./( 1 + 2j*(1/Qc + 1/Qi)**(-1) * (f - f0)/f0 )))).max()
fitreturn = (fit, fiterror, maxpower_c, guess)
return fitreturn
@inlineCallbacks
def calibrate_fit(self, sparam, singlefit, dirname, filenum, shunt, cal, range, background):
#Read a single s21 trace, calibrate data, and fit Q
#Read s21 data from s21 from Data Vault into numpy array
s21={}
s21['rawdata'] = yield self.open_s21(sparam, dirname,filenum)
#Get parameters for this data set
params = yield self.client.data_vault.get_parameters()
s21.update(dict(params))
#If data to be calibrated, calibrates data
if (cal[0] or range[0] or background[0]):
calresults = yield self.calibrate_data(sparam,s21['rawdata'],cal,range,background)
s21['caldata'] = calresults[0]
if (background[0] and singlefit):
s21['PreBackgroundFrequency'] = calresults[1][0]
s21['PreBackgroundData'] = calresults[1][1]
s21['BackgroundFitPolynomial'] = calresults[1][2]
s21['BackgroundRemovedData'] = calresults[1][3]
else:
s21['caldata'] = s21['rawdata']
#Fit resonator data (function depends on what type of resonator)
s21['maxpowerUncal'] = (20 * numpy.log10(abs(s21['rawdata'][1]))).max()
(s21['fit'],s21['fiterror'],s21['maxpowerCal'],s21['initGuess']) = self.resonant_fit(s21['caldata'][0].real,s21['caldata'][1],shunt)
returnValue(s21)
@inlineCallbacks
def multifile_fit(self, sparam, dirname, shunt, cal, range, background):
#Load multiple s21 traces. For each, run calibrate_fit to calibrate data and fit Q.
dv = self.client.data_vault
# Goes to the correct directory.
yield dv.cd([''])
yield dv.cd(dirname)
# Get contents of directory (by numerical tags)
dirContents = yield dv.dir()
files = dirContents[1]
listnum = []
for filename in files:
filenum = int(filename[0:6])
listnum.append(filenum)
# Open first file in directory
filenum = listnum[0]
s21 = yield self.calibrate_fit(sparam,False,dirname,filenum,shunt,cal,range,background)
# Set up results dictionary
sweeps = {}
for key in s21.keys():
sweeps[key]=[s21[key]]
# Load data into results dictionary
for filenum in listnum[1:]:
s21 = yield self.calibrate_fit(sparam,False,dirname,filenum,shunt,cal,range,background)
for key in sweeps.keys():
sweeps[key].append(s21[key])
returnValue(sweeps)
@setting(10, 'Single Fit', sparam='s', dirname='*s', filenum='w', shunt='b', ifcal='b', caldir='*s', calnum='w', ifrange='b', rangemin='v', rangemax='v', ifback='b', backmin='v', backmax='v', backorder='w', returns='?')
def single_fit(self, c, sparam, dirname, filenum, shunt, ifcal, caldir, calnum, ifrange, rangemin, rangemax, ifback, backmin, backmax, backorder):
"""Fits a single S21 trace with calibration. To retrieve data, change result to dictionary."""
fitDict = yield self.calibrate_fit(sparam,True,dirname,filenum,shunt,(ifcal,caldir,calnum),(ifrange,rangemin,rangemax),(ifback,backmin,backmax,backorder))
returnValue(tuple(fitDict.items()))
@setting(20, 'Multiple Fit', sparam='s', dirname='*s', shunt='b', ifcal='b', caldir='*s', calnum='w', ifrange='b', rangemin='v', rangemax='v', ifback='b', backmin='v', backmax='v', backorder='w', returns='?')
def multiple_fit(self, c, sparam, dirname, shunt, ifcal, caldir, calnum, ifrange, rangemin, rangemax, ifback, backmin, backmax, backorder):
"""Fits multiple S21 traces with calibration."""
fitDict = yield self.multifile_fit(sparam,dirname,shunt,(ifcal,caldir,calnum),(ifrange,rangemin,rangemax),(ifback,backmin,backmax,backorder))
returnValue(tuple(fitDict.items()))
#Run this server if this is being run as a script, not imported by another script.
if __name__=="__main__":
from labrad import util
util.runServer(ResonatorFit())