forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lm85.c
1711 lines (1486 loc) · 48.9 KB
/
lm85.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* lm85.c - Part of lm_sensors, Linux kernel modules for hardware
* monitoring
* Copyright (c) 1998, 1999 Frodo Looijaard <[email protected]>
* Copyright (c) 2002, 2003 Philip Pokorny <[email protected]>
* Copyright (c) 2003 Margit Schubert-While <[email protected]>
* Copyright (c) 2004 Justin Thiessen <[email protected]>
* Copyright (C) 2007--2014 Jean Delvare <[email protected]>
*
* Chip details at <http://www.national.com/ds/LM/LM85.pdf>
*/
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-vid.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/util_macros.h>
/* Addresses to scan */
static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
enum chips {
lm85, lm96000,
adm1027, adt7463, adt7468,
emc6d100, emc6d102, emc6d103, emc6d103s
};
/* The LM85 registers */
#define LM85_REG_IN(nr) (0x20 + (nr))
#define LM85_REG_IN_MIN(nr) (0x44 + (nr) * 2)
#define LM85_REG_IN_MAX(nr) (0x45 + (nr) * 2)
#define LM85_REG_TEMP(nr) (0x25 + (nr))
#define LM85_REG_TEMP_MIN(nr) (0x4e + (nr) * 2)
#define LM85_REG_TEMP_MAX(nr) (0x4f + (nr) * 2)
/* Fan speeds are LSB, MSB (2 bytes) */
#define LM85_REG_FAN(nr) (0x28 + (nr) * 2)
#define LM85_REG_FAN_MIN(nr) (0x54 + (nr) * 2)
#define LM85_REG_PWM(nr) (0x30 + (nr))
#define LM85_REG_COMPANY 0x3e
#define LM85_REG_VERSTEP 0x3f
#define ADT7468_REG_CFG5 0x7c
#define ADT7468_OFF64 (1 << 0)
#define ADT7468_HFPWM (1 << 1)
#define IS_ADT7468_OFF64(data) \
((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
#define IS_ADT7468_HFPWM(data) \
((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
/* These are the recognized values for the above regs */
#define LM85_COMPANY_NATIONAL 0x01
#define LM85_COMPANY_ANALOG_DEV 0x41
#define LM85_COMPANY_SMSC 0x5c
#define LM85_VERSTEP_LM85C 0x60
#define LM85_VERSTEP_LM85B 0x62
#define LM85_VERSTEP_LM96000_1 0x68
#define LM85_VERSTEP_LM96000_2 0x69
#define LM85_VERSTEP_ADM1027 0x60
#define LM85_VERSTEP_ADT7463 0x62
#define LM85_VERSTEP_ADT7463C 0x6A
#define LM85_VERSTEP_ADT7468_1 0x71
#define LM85_VERSTEP_ADT7468_2 0x72
#define LM85_VERSTEP_EMC6D100_A0 0x60
#define LM85_VERSTEP_EMC6D100_A1 0x61
#define LM85_VERSTEP_EMC6D102 0x65
#define LM85_VERSTEP_EMC6D103_A0 0x68
#define LM85_VERSTEP_EMC6D103_A1 0x69
#define LM85_VERSTEP_EMC6D103S 0x6A /* Also known as EMC6D103:A2 */
#define LM85_REG_CONFIG 0x40
#define LM85_REG_ALARM1 0x41
#define LM85_REG_ALARM2 0x42
#define LM85_REG_VID 0x43
/* Automated FAN control */
#define LM85_REG_AFAN_CONFIG(nr) (0x5c + (nr))
#define LM85_REG_AFAN_RANGE(nr) (0x5f + (nr))
#define LM85_REG_AFAN_SPIKE1 0x62
#define LM85_REG_AFAN_MINPWM(nr) (0x64 + (nr))
#define LM85_REG_AFAN_LIMIT(nr) (0x67 + (nr))
#define LM85_REG_AFAN_CRITICAL(nr) (0x6a + (nr))
#define LM85_REG_AFAN_HYST1 0x6d
#define LM85_REG_AFAN_HYST2 0x6e
#define ADM1027_REG_EXTEND_ADC1 0x76
#define ADM1027_REG_EXTEND_ADC2 0x77
#define EMC6D100_REG_ALARM3 0x7d
/* IN5, IN6 and IN7 */
#define EMC6D100_REG_IN(nr) (0x70 + ((nr) - 5))
#define EMC6D100_REG_IN_MIN(nr) (0x73 + ((nr) - 5) * 2)
#define EMC6D100_REG_IN_MAX(nr) (0x74 + ((nr) - 5) * 2)
#define EMC6D102_REG_EXTEND_ADC1 0x85
#define EMC6D102_REG_EXTEND_ADC2 0x86
#define EMC6D102_REG_EXTEND_ADC3 0x87
#define EMC6D102_REG_EXTEND_ADC4 0x88
/*
* Conversions. Rounding and limit checking is only done on the TO_REG
* variants. Note that you should be a bit careful with which arguments
* these macros are called: arguments may be evaluated more than once.
*/
/* IN are scaled according to built-in resistors */
static const int lm85_scaling[] = { /* .001 Volts */
2500, 2250, 3300, 5000, 12000,
3300, 1500, 1800 /*EMC6D100*/
};
#define SCALE(val, from, to) (((val) * (to) + ((from) / 2)) / (from))
#define INS_TO_REG(n, val) \
SCALE(clamp_val(val, 0, 255 * lm85_scaling[n] / 192), \
lm85_scaling[n], 192)
#define INSEXT_FROM_REG(n, val, ext) \
SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
#define INS_FROM_REG(n, val) SCALE((val), 192, lm85_scaling[n])
/* FAN speed is measured using 90kHz clock */
static inline u16 FAN_TO_REG(unsigned long val)
{
if (!val)
return 0xffff;
return clamp_val(5400000 / val, 1, 0xfffe);
}
#define FAN_FROM_REG(val) ((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
5400000 / (val))
/* Temperature is reported in .001 degC increments */
#define TEMP_TO_REG(val) \
DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000)
#define TEMPEXT_FROM_REG(val, ext) \
SCALE(((val) << 4) + (ext), 16, 1000)
#define TEMP_FROM_REG(val) ((val) * 1000)
#define PWM_TO_REG(val) clamp_val(val, 0, 255)
#define PWM_FROM_REG(val) (val)
/*
* ZONEs have the following parameters:
* Limit (low) temp, 1. degC
* Hysteresis (below limit), 1. degC (0-15)
* Range of speed control, .1 degC (2-80)
* Critical (high) temp, 1. degC
*
* FAN PWMs have the following parameters:
* Reference Zone, 1, 2, 3, etc.
* Spinup time, .05 sec
* PWM value at limit/low temp, 1 count
* PWM Frequency, 1. Hz
* PWM is Min or OFF below limit, flag
* Invert PWM output, flag
*
* Some chips filter the temp, others the fan.
* Filter constant (or disabled) .1 seconds
*/
/* These are the zone temperature range encodings in .001 degree C */
static const int lm85_range_map[] = {
2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
};
static int RANGE_TO_REG(long range)
{
return find_closest(range, lm85_range_map, ARRAY_SIZE(lm85_range_map));
}
#define RANGE_FROM_REG(val) lm85_range_map[(val) & 0x0f]
/* These are the PWM frequency encodings */
static const int lm85_freq_map[] = { /* 1 Hz */
10, 15, 23, 30, 38, 47, 61, 94
};
static const int lm96000_freq_map[] = { /* 1 Hz */
10, 15, 23, 30, 38, 47, 61, 94,
22500, 24000, 25700, 25700, 27700, 27700, 30000, 30000
};
static const int adm1027_freq_map[] = { /* 1 Hz */
11, 15, 22, 29, 35, 44, 59, 88
};
static int FREQ_TO_REG(const int *map,
unsigned int map_size, unsigned long freq)
{
return find_closest(freq, map, map_size);
}
static int FREQ_FROM_REG(const int *map, unsigned int map_size, u8 reg)
{
return map[reg % map_size];
}
/*
* Since we can't use strings, I'm abusing these numbers
* to stand in for the following meanings:
* 1 -- PWM responds to Zone 1
* 2 -- PWM responds to Zone 2
* 3 -- PWM responds to Zone 3
* 23 -- PWM responds to the higher temp of Zone 2 or 3
* 123 -- PWM responds to highest of Zone 1, 2, or 3
* 0 -- PWM is always at 0% (ie, off)
* -1 -- PWM is always at 100%
* -2 -- PWM responds to manual control
*/
static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
#define ZONE_FROM_REG(val) lm85_zone_map[(val) >> 5]
static int ZONE_TO_REG(int zone)
{
int i;
for (i = 0; i <= 7; ++i)
if (zone == lm85_zone_map[i])
break;
if (i > 7) /* Not found. */
i = 3; /* Always 100% */
return i << 5;
}
#define HYST_TO_REG(val) clamp_val(((val) + 500) / 1000, 0, 15)
#define HYST_FROM_REG(val) ((val) * 1000)
/*
* Chip sampling rates
*
* Some sensors are not updated more frequently than once per second
* so it doesn't make sense to read them more often than that.
* We cache the results and return the saved data if the driver
* is called again before a second has elapsed.
*
* Also, there is significant configuration data for this chip
* given the automatic PWM fan control that is possible. There
* are about 47 bytes of config data to only 22 bytes of actual
* readings. So, we keep the config data up to date in the cache
* when it is written and only sample it once every 1 *minute*
*/
#define LM85_DATA_INTERVAL (HZ + HZ / 2)
#define LM85_CONFIG_INTERVAL (1 * 60 * HZ)
/*
* LM85 can automatically adjust fan speeds based on temperature
* This structure encapsulates an entire Zone config. There are
* three zones (one for each temperature input) on the lm85
*/
struct lm85_zone {
s8 limit; /* Low temp limit */
u8 hyst; /* Low limit hysteresis. (0-15) */
u8 range; /* Temp range, encoded */
s8 critical; /* "All fans ON" temp limit */
u8 max_desired; /*
* Actual "max" temperature specified. Preserved
* to prevent "drift" as other autofan control
* values change.
*/
};
struct lm85_autofan {
u8 config; /* Register value */
u8 min_pwm; /* Minimum PWM value, encoded */
u8 min_off; /* Min PWM or OFF below "limit", flag */
};
/*
* For each registered chip, we need to keep some data in memory.
* The structure is dynamically allocated.
*/
struct lm85_data {
struct i2c_client *client;
const struct attribute_group *groups[6];
const int *freq_map;
unsigned int freq_map_size;
enum chips type;
bool has_vid5; /* true if VID5 is configured for ADT7463 or ADT7468 */
struct mutex update_lock;
int valid; /* !=0 if following fields are valid */
unsigned long last_reading; /* In jiffies */
unsigned long last_config; /* In jiffies */
u8 in[8]; /* Register value */
u8 in_max[8]; /* Register value */
u8 in_min[8]; /* Register value */
s8 temp[3]; /* Register value */
s8 temp_min[3]; /* Register value */
s8 temp_max[3]; /* Register value */
u16 fan[4]; /* Register value */
u16 fan_min[4]; /* Register value */
u8 pwm[3]; /* Register value */
u8 pwm_freq[3]; /* Register encoding */
u8 temp_ext[3]; /* Decoded values */
u8 in_ext[8]; /* Decoded values */
u8 vid; /* Register value */
u8 vrm; /* VRM version */
u32 alarms; /* Register encoding, combined */
u8 cfg5; /* Config Register 5 on ADT7468 */
struct lm85_autofan autofan[3];
struct lm85_zone zone[3];
};
static int lm85_read_value(struct i2c_client *client, u8 reg)
{
int res;
/* What size location is it? */
switch (reg) {
case LM85_REG_FAN(0): /* Read WORD data */
case LM85_REG_FAN(1):
case LM85_REG_FAN(2):
case LM85_REG_FAN(3):
case LM85_REG_FAN_MIN(0):
case LM85_REG_FAN_MIN(1):
case LM85_REG_FAN_MIN(2):
case LM85_REG_FAN_MIN(3):
case LM85_REG_ALARM1: /* Read both bytes at once */
res = i2c_smbus_read_byte_data(client, reg) & 0xff;
res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
break;
default: /* Read BYTE data */
res = i2c_smbus_read_byte_data(client, reg);
break;
}
return res;
}
static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
{
switch (reg) {
case LM85_REG_FAN(0): /* Write WORD data */
case LM85_REG_FAN(1):
case LM85_REG_FAN(2):
case LM85_REG_FAN(3):
case LM85_REG_FAN_MIN(0):
case LM85_REG_FAN_MIN(1):
case LM85_REG_FAN_MIN(2):
case LM85_REG_FAN_MIN(3):
/* NOTE: ALARM is read only, so not included here */
i2c_smbus_write_byte_data(client, reg, value & 0xff);
i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
break;
default: /* Write BYTE data */
i2c_smbus_write_byte_data(client, reg, value);
break;
}
}
static struct lm85_data *lm85_update_device(struct device *dev)
{
struct lm85_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int i;
mutex_lock(&data->update_lock);
if (!data->valid ||
time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
/* Things that change quickly */
dev_dbg(&client->dev, "Reading sensor values\n");
/*
* Have to read extended bits first to "freeze" the
* more significant bits that are read later.
* There are 2 additional resolution bits per channel and we
* have room for 4, so we shift them to the left.
*/
if (data->type == adm1027 || data->type == adt7463 ||
data->type == adt7468) {
int ext1 = lm85_read_value(client,
ADM1027_REG_EXTEND_ADC1);
int ext2 = lm85_read_value(client,
ADM1027_REG_EXTEND_ADC2);
int val = (ext1 << 8) + ext2;
for (i = 0; i <= 4; i++)
data->in_ext[i] =
((val >> (i * 2)) & 0x03) << 2;
for (i = 0; i <= 2; i++)
data->temp_ext[i] =
(val >> ((i + 4) * 2)) & 0x0c;
}
data->vid = lm85_read_value(client, LM85_REG_VID);
for (i = 0; i <= 3; ++i) {
data->in[i] =
lm85_read_value(client, LM85_REG_IN(i));
data->fan[i] =
lm85_read_value(client, LM85_REG_FAN(i));
}
if (!data->has_vid5)
data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
if (data->type == adt7468)
data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
for (i = 0; i <= 2; ++i) {
data->temp[i] =
lm85_read_value(client, LM85_REG_TEMP(i));
data->pwm[i] =
lm85_read_value(client, LM85_REG_PWM(i));
if (IS_ADT7468_OFF64(data))
data->temp[i] -= 64;
}
data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
if (data->type == emc6d100) {
/* Three more voltage sensors */
for (i = 5; i <= 7; ++i) {
data->in[i] = lm85_read_value(client,
EMC6D100_REG_IN(i));
}
/* More alarm bits */
data->alarms |= lm85_read_value(client,
EMC6D100_REG_ALARM3) << 16;
} else if (data->type == emc6d102 || data->type == emc6d103 ||
data->type == emc6d103s) {
/*
* Have to read LSB bits after the MSB ones because
* the reading of the MSB bits has frozen the
* LSBs (backward from the ADM1027).
*/
int ext1 = lm85_read_value(client,
EMC6D102_REG_EXTEND_ADC1);
int ext2 = lm85_read_value(client,
EMC6D102_REG_EXTEND_ADC2);
int ext3 = lm85_read_value(client,
EMC6D102_REG_EXTEND_ADC3);
int ext4 = lm85_read_value(client,
EMC6D102_REG_EXTEND_ADC4);
data->in_ext[0] = ext3 & 0x0f;
data->in_ext[1] = ext4 & 0x0f;
data->in_ext[2] = ext4 >> 4;
data->in_ext[3] = ext3 >> 4;
data->in_ext[4] = ext2 >> 4;
data->temp_ext[0] = ext1 & 0x0f;
data->temp_ext[1] = ext2 & 0x0f;
data->temp_ext[2] = ext1 >> 4;
}
data->last_reading = jiffies;
} /* last_reading */
if (!data->valid ||
time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
/* Things that don't change often */
dev_dbg(&client->dev, "Reading config values\n");
for (i = 0; i <= 3; ++i) {
data->in_min[i] =
lm85_read_value(client, LM85_REG_IN_MIN(i));
data->in_max[i] =
lm85_read_value(client, LM85_REG_IN_MAX(i));
data->fan_min[i] =
lm85_read_value(client, LM85_REG_FAN_MIN(i));
}
if (!data->has_vid5) {
data->in_min[4] = lm85_read_value(client,
LM85_REG_IN_MIN(4));
data->in_max[4] = lm85_read_value(client,
LM85_REG_IN_MAX(4));
}
if (data->type == emc6d100) {
for (i = 5; i <= 7; ++i) {
data->in_min[i] = lm85_read_value(client,
EMC6D100_REG_IN_MIN(i));
data->in_max[i] = lm85_read_value(client,
EMC6D100_REG_IN_MAX(i));
}
}
for (i = 0; i <= 2; ++i) {
int val;
data->temp_min[i] =
lm85_read_value(client, LM85_REG_TEMP_MIN(i));
data->temp_max[i] =
lm85_read_value(client, LM85_REG_TEMP_MAX(i));
data->autofan[i].config =
lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
data->pwm_freq[i] = val % data->freq_map_size;
data->zone[i].range = val >> 4;
data->autofan[i].min_pwm =
lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
data->zone[i].limit =
lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
data->zone[i].critical =
lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
if (IS_ADT7468_OFF64(data)) {
data->temp_min[i] -= 64;
data->temp_max[i] -= 64;
data->zone[i].limit -= 64;
data->zone[i].critical -= 64;
}
}
if (data->type != emc6d103s) {
i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
data->autofan[0].min_off = (i & 0x20) != 0;
data->autofan[1].min_off = (i & 0x40) != 0;
data->autofan[2].min_off = (i & 0x80) != 0;
i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
data->zone[0].hyst = i >> 4;
data->zone[1].hyst = i & 0x0f;
i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
data->zone[2].hyst = i >> 4;
}
data->last_config = jiffies;
} /* last_config */
data->valid = 1;
mutex_unlock(&data->update_lock);
return data;
}
/* 4 Fans */
static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
}
static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
}
static ssize_t fan_min_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->fan_min[nr] = FAN_TO_REG(val);
lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
static SENSOR_DEVICE_ATTR_RO(fan3_input, fan, 2);
static SENSOR_DEVICE_ATTR_RW(fan3_min, fan_min, 2);
static SENSOR_DEVICE_ATTR_RO(fan4_input, fan, 3);
static SENSOR_DEVICE_ATTR_RW(fan4_min, fan_min, 3);
/* vid, vrm, alarms */
static ssize_t cpu0_vid_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct lm85_data *data = lm85_update_device(dev);
int vid;
if (data->has_vid5) {
/* 6-pin VID (VRM 10) */
vid = vid_from_reg(data->vid & 0x3f, data->vrm);
} else {
/* 5-pin VID (VRM 9) */
vid = vid_from_reg(data->vid & 0x1f, data->vrm);
}
return sprintf(buf, "%d\n", vid);
}
static DEVICE_ATTR_RO(cpu0_vid);
static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct lm85_data *data = dev_get_drvdata(dev);
return sprintf(buf, "%ld\n", (long) data->vrm);
}
static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct lm85_data *data = dev_get_drvdata(dev);
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
if (val > 255)
return -EINVAL;
data->vrm = val;
return count;
}
static DEVICE_ATTR_RW(vrm);
static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf, "%u\n", data->alarms);
}
static DEVICE_ATTR_RO(alarms);
static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
}
static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0);
static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1);
static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2);
static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3);
static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 8);
static SENSOR_DEVICE_ATTR_RO(in5_alarm, alarm, 18);
static SENSOR_DEVICE_ATTR_RO(in6_alarm, alarm, 16);
static SENSOR_DEVICE_ATTR_RO(in7_alarm, alarm, 17);
static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm, 4);
static SENSOR_DEVICE_ATTR_RO(temp1_fault, alarm, 14);
static SENSOR_DEVICE_ATTR_RO(temp2_alarm, alarm, 5);
static SENSOR_DEVICE_ATTR_RO(temp3_alarm, alarm, 6);
static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 15);
static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 10);
static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 11);
static SENSOR_DEVICE_ATTR_RO(fan3_alarm, alarm, 12);
static SENSOR_DEVICE_ATTR_RO(fan4_alarm, alarm, 13);
/* pwm */
static ssize_t pwm_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
}
static ssize_t pwm_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->pwm[nr] = PWM_TO_REG(val);
lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t pwm_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
int pwm_zone, enable;
pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
switch (pwm_zone) {
case -1: /* PWM is always at 100% */
enable = 0;
break;
case 0: /* PWM is always at 0% */
case -2: /* PWM responds to manual control */
enable = 1;
break;
default: /* PWM in automatic mode */
enable = 2;
}
return sprintf(buf, "%d\n", enable);
}
static ssize_t pwm_enable_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
u8 config;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
switch (val) {
case 0:
config = 3;
break;
case 1:
config = 7;
break;
case 2:
/*
* Here we have to choose arbitrarily one of the 5 possible
* configurations; I go for the safest
*/
config = 6;
break;
default:
return -EINVAL;
}
mutex_lock(&data->update_lock);
data->autofan[nr].config = lm85_read_value(client,
LM85_REG_AFAN_CONFIG(nr));
data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
| (config << 5);
lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
data->autofan[nr].config);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t pwm_freq_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
int freq;
if (IS_ADT7468_HFPWM(data))
freq = 22500;
else
freq = FREQ_FROM_REG(data->freq_map, data->freq_map_size,
data->pwm_freq[nr]);
return sprintf(buf, "%d\n", freq);
}
static ssize_t pwm_freq_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
/*
* The ADT7468 has a special high-frequency PWM output mode,
* where all PWM outputs are driven by a 22.5 kHz clock.
* This might confuse the user, but there's not much we can do.
*/
if (data->type == adt7468 && val >= 11300) { /* High freq. mode */
data->cfg5 &= ~ADT7468_HFPWM;
lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
} else { /* Low freq. mode */
data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map,
data->freq_map_size, val);
lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
(data->zone[nr].range << 4)
| data->pwm_freq[nr]);
if (data->type == adt7468) {
data->cfg5 |= ADT7468_HFPWM;
lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
}
}
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0);
static SENSOR_DEVICE_ATTR_RW(pwm1_enable, pwm_enable, 0);
static SENSOR_DEVICE_ATTR_RW(pwm1_freq, pwm_freq, 0);
static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1);
static SENSOR_DEVICE_ATTR_RW(pwm2_enable, pwm_enable, 1);
static SENSOR_DEVICE_ATTR_RW(pwm2_freq, pwm_freq, 1);
static SENSOR_DEVICE_ATTR_RW(pwm3, pwm, 2);
static SENSOR_DEVICE_ATTR_RW(pwm3_enable, pwm_enable, 2);
static SENSOR_DEVICE_ATTR_RW(pwm3_freq, pwm_freq, 2);
/* Voltages */
static ssize_t in_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
data->in_ext[nr]));
}
static ssize_t in_min_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
}
static ssize_t in_min_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->in_min[nr] = INS_TO_REG(nr, val);
lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t in_max_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
}
static ssize_t in_max_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->in_max[nr] = INS_TO_REG(nr, val);
lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR_RO(in0_input, in, 0);
static SENSOR_DEVICE_ATTR_RW(in0_min, in_min, 0);
static SENSOR_DEVICE_ATTR_RW(in0_max, in_max, 0);
static SENSOR_DEVICE_ATTR_RO(in1_input, in, 1);
static SENSOR_DEVICE_ATTR_RW(in1_min, in_min, 1);
static SENSOR_DEVICE_ATTR_RW(in1_max, in_max, 1);
static SENSOR_DEVICE_ATTR_RO(in2_input, in, 2);
static SENSOR_DEVICE_ATTR_RW(in2_min, in_min, 2);
static SENSOR_DEVICE_ATTR_RW(in2_max, in_max, 2);
static SENSOR_DEVICE_ATTR_RO(in3_input, in, 3);
static SENSOR_DEVICE_ATTR_RW(in3_min, in_min, 3);
static SENSOR_DEVICE_ATTR_RW(in3_max, in_max, 3);
static SENSOR_DEVICE_ATTR_RO(in4_input, in, 4);
static SENSOR_DEVICE_ATTR_RW(in4_min, in_min, 4);
static SENSOR_DEVICE_ATTR_RW(in4_max, in_max, 4);
static SENSOR_DEVICE_ATTR_RO(in5_input, in, 5);
static SENSOR_DEVICE_ATTR_RW(in5_min, in_min, 5);
static SENSOR_DEVICE_ATTR_RW(in5_max, in_max, 5);
static SENSOR_DEVICE_ATTR_RO(in6_input, in, 6);
static SENSOR_DEVICE_ATTR_RW(in6_min, in_min, 6);
static SENSOR_DEVICE_ATTR_RW(in6_max, in_max, 6);
static SENSOR_DEVICE_ATTR_RO(in7_input, in, 7);
static SENSOR_DEVICE_ATTR_RW(in7_min, in_min, 7);
static SENSOR_DEVICE_ATTR_RW(in7_max, in_max, 7);
/* Temps */
static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
data->temp_ext[nr]));
}
static ssize_t temp_min_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
}
static ssize_t temp_min_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
if (IS_ADT7468_OFF64(data))
val += 64;
mutex_lock(&data->update_lock);
data->temp_min[nr] = TEMP_TO_REG(val);
lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t temp_max_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
}
static ssize_t temp_max_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm85_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
if (IS_ADT7468_OFF64(data))
val += 64;