Skip to content

Latest commit

 

History

History
221 lines (177 loc) · 9.03 KB

bpf_design_QA.rst

File metadata and controls

221 lines (177 loc) · 9.03 KB

BPF Design Q&A

BPF extensibility and applicability to networking, tracing, security in the linux kernel and several user space implementations of BPF virtual machine led to a number of misunderstanding on what BPF actually is. This short QA is an attempt to address that and outline a direction of where BPF is heading long term.

A: NO.

A: NO.

A: Because BPF programs are designed to run in the linux kernel which is written in C, hence BPF defines instruction set compatible with two most used architectures x64 and arm64 (and takes into consideration important quirks of other architectures) and defines calling convention that is compatible with C calling convention of the linux kernel on those architectures.

A: NO. BPF allows only register R0 to be used as return value.

A: NO. BPF calling convention only allows registers R1-R5 to be used as arguments. BPF is not a standalone instruction set. (unlike x64 ISA that allows msft, cdecl and other conventions)

A: NO.

A: NO.

Only frame pointer (register R10) is accessible. From compiler point of view it's necessary to have stack pointer. For example LLVM defines register R11 as stack pointer in its BPF backend, but it makes sure that generated code never uses it.

A: YES.

BPF design forces addition of major functionality in the form of kernel helper functions and kernel objects like BPF maps with seamless interoperability between them. It lets kernel call into BPF programs and programs call kernel helpers with zero overhead. As all of them were native C code. That is particularly the case for JITed BPF programs that are indistinguishable from native kernel C code.

A: Soft yes.

At least for now until BPF core has support for bpf-to-bpf calls, indirect calls, loops, global variables, jump tables, read only sections and all other normal constructs that C code can produce.

A: It's not clear yet.

BPF developers are trying to find a way to support bounded loops where the verifier can guarantee that the program terminates in less than 4096 instructions.

Q: How come LD_ABS and LD_IND instruction are present in BPF whereas C code cannot express them and has to use builtin intrinsics?

A: This is artifact of compatibility with classic BPF. Modern networking code in BPF performs better without them. See 'direct packet access'.

Q: It seems not all BPF instructions are one-to-one to native CPU. For example why BPF_JNE and other compare and jumps are not cpu-like?

A: This was necessary to avoid introducing flags into ISA which are impossible to make generic and efficient across CPU architectures.

A: Because if we picked one-to-one relationship to x64 it would have made it more complicated to support on arm64 and other archs. Also it needs div-by-zero runtime check.

A: Because it would be rarely used. llvm errors in such case and prints a suggestion to use unsigned divide instead

A: Because architectures like sparc have register windows and in general there are enough subtle differences between architectures, so naive store return address into stack won't work. Another reason is BPF has to be safe from division by zero (and legacy exception path of LD_ABS insn). Those instructions need to invoke epilogue and return implicitly.

A: Because classic BPF didn't have them and BPF authors felt that compiler workaround would be acceptable. Turned out that programs lose performance due to lack of these compare instructions and they were added. These two instructions is a perfect example what kind of new BPF instructions are acceptable and can be added in the future. These two already had equivalent instructions in native CPUs. New instructions that don't have one-to-one mapping to HW instructions will not be accepted.

Q: BPF 32-bit subregisters have a requirement to zero upper 32-bits of BPF registers which makes BPF inefficient virtual machine for 32-bit CPU architectures and 32-bit HW accelerators. Can true 32-bit registers be added to BPF in the future?

A: NO. The first thing to improve performance on 32-bit archs is to teach LLVM to generate code that uses 32-bit subregisters. Then second step is to teach verifier to mark operations where zero-ing upper bits is unnecessary. Then JITs can take advantage of those markings and drastically reduce size of generated code and improve performance.

A: YES. BPF instructions, arguments to BPF programs, set of helper functions and their arguments, recognized return codes are all part of ABI. However when tracing programs are using bpf_probe_read() helper to walk kernel internal datastructures and compile with kernel internal headers these accesses can and will break with newer kernels. The union bpf_attr -> kern_version is checked at load time to prevent accidentally loading kprobe-based bpf programs written for a different kernel. Networking programs don't do kern_version check.

A: Currently all program types are limited to 512 bytes of stack space, but the verifier computes the actual amount of stack used and both interpreter and most JITed code consume necessary amount.

A: YES. BPF HW offload is supported by NFP driver.

A: NO. Classic BPF programs are converted into extend BPF instructions.

A: NO. BPF programs can only call a set of helper functions which is defined for every program type.

A: NO.

Tracing bpf programs can read arbitrary memory with bpf_probe_read() and bpf_probe_read_str() helpers. Networking programs cannot read arbitrary memory, since they don't have access to these helpers. Programs can never read or write arbitrary memory directly.

A: Sort-of.

Tracing BPF programs can overwrite the user memory of the current task with bpf_probe_write_user(). Every time such program is loaded the kernel will print warning message, so this helper is only useful for experiments and prototypes. Tracing BPF programs are root only.

Q: When bpf_trace_printk() helper is used the kernel prints nasty warning message. Why is that?

A: This is done to nudge program authors into better interfaces when programs need to pass data to user space. Like bpf_perf_event_output() can be used to efficiently stream data via perf ring buffer. BPF maps can be used for asynchronous data sharing between kernel and user space. bpf_trace_printk() should only be used for debugging.

Q: Can BPF functionality such as new program or map types, new helpers, etc be added out of kernel module code?

A: NO.