forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtimer-fttmr010.c
421 lines (371 loc) · 11.2 KB
/
timer-fttmr010.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
// SPDX-License-Identifier: GPL-2.0
/*
* Faraday Technology FTTMR010 timer driver
* Copyright (C) 2017 Linus Walleij <[email protected]>
*
* Based on a rewrite of arch/arm/mach-gemini/timer.c:
* Copyright (C) 2001-2006 Storlink, Corp.
* Copyright (C) 2008-2009 Paulius Zaleckas <[email protected]>
*/
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/clockchips.h>
#include <linux/clocksource.h>
#include <linux/sched_clock.h>
#include <linux/clk.h>
#include <linux/slab.h>
#include <linux/bitops.h>
#include <linux/delay.h>
/*
* Register definitions common for all the timer variants.
*/
#define TIMER1_COUNT (0x00)
#define TIMER1_LOAD (0x04)
#define TIMER1_MATCH1 (0x08)
#define TIMER1_MATCH2 (0x0c)
#define TIMER2_COUNT (0x10)
#define TIMER2_LOAD (0x14)
#define TIMER2_MATCH1 (0x18)
#define TIMER2_MATCH2 (0x1c)
#define TIMER3_COUNT (0x20)
#define TIMER3_LOAD (0x24)
#define TIMER3_MATCH1 (0x28)
#define TIMER3_MATCH2 (0x2c)
#define TIMER_CR (0x30)
/*
* Control register (TMC30) bit fields for fttmr010/gemini/moxart timers.
*/
#define TIMER_1_CR_ENABLE BIT(0)
#define TIMER_1_CR_CLOCK BIT(1)
#define TIMER_1_CR_INT BIT(2)
#define TIMER_2_CR_ENABLE BIT(3)
#define TIMER_2_CR_CLOCK BIT(4)
#define TIMER_2_CR_INT BIT(5)
#define TIMER_3_CR_ENABLE BIT(6)
#define TIMER_3_CR_CLOCK BIT(7)
#define TIMER_3_CR_INT BIT(8)
#define TIMER_1_CR_UPDOWN BIT(9)
#define TIMER_2_CR_UPDOWN BIT(10)
#define TIMER_3_CR_UPDOWN BIT(11)
/*
* Control register (TMC30) bit fields for aspeed ast2400/ast2500 timers.
* The aspeed timers move bits around in the control register and lacks
* bits for setting the timer to count upwards.
*/
#define TIMER_1_CR_ASPEED_ENABLE BIT(0)
#define TIMER_1_CR_ASPEED_CLOCK BIT(1)
#define TIMER_1_CR_ASPEED_INT BIT(2)
#define TIMER_2_CR_ASPEED_ENABLE BIT(4)
#define TIMER_2_CR_ASPEED_CLOCK BIT(5)
#define TIMER_2_CR_ASPEED_INT BIT(6)
#define TIMER_3_CR_ASPEED_ENABLE BIT(8)
#define TIMER_3_CR_ASPEED_CLOCK BIT(9)
#define TIMER_3_CR_ASPEED_INT BIT(10)
/*
* Interrupt status/mask register definitions for fttmr010/gemini/moxart
* timers.
* The registers don't exist and they are not needed on aspeed timers
* because:
* - aspeed timer overflow interrupt is controlled by bits in Control
* Register (TMC30).
* - aspeed timers always generate interrupt when either one of the
* Match registers equals to Status register.
*/
#define TIMER_INTR_STATE (0x34)
#define TIMER_INTR_MASK (0x38)
#define TIMER_1_INT_MATCH1 BIT(0)
#define TIMER_1_INT_MATCH2 BIT(1)
#define TIMER_1_INT_OVERFLOW BIT(2)
#define TIMER_2_INT_MATCH1 BIT(3)
#define TIMER_2_INT_MATCH2 BIT(4)
#define TIMER_2_INT_OVERFLOW BIT(5)
#define TIMER_3_INT_MATCH1 BIT(6)
#define TIMER_3_INT_MATCH2 BIT(7)
#define TIMER_3_INT_OVERFLOW BIT(8)
#define TIMER_INT_ALL_MASK 0x1ff
struct fttmr010 {
void __iomem *base;
unsigned int tick_rate;
bool is_aspeed;
u32 t1_enable_val;
struct clock_event_device clkevt;
#ifdef CONFIG_ARM
struct delay_timer delay_timer;
#endif
};
/*
* A local singleton used by sched_clock and delay timer reads, which are
* fast and stateless
*/
static struct fttmr010 *local_fttmr;
static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
{
return container_of(evt, struct fttmr010, clkevt);
}
static unsigned long fttmr010_read_current_timer_up(void)
{
return readl(local_fttmr->base + TIMER2_COUNT);
}
static unsigned long fttmr010_read_current_timer_down(void)
{
return ~readl(local_fttmr->base + TIMER2_COUNT);
}
static u64 notrace fttmr010_read_sched_clock_up(void)
{
return fttmr010_read_current_timer_up();
}
static u64 notrace fttmr010_read_sched_clock_down(void)
{
return fttmr010_read_current_timer_down();
}
static int fttmr010_timer_set_next_event(unsigned long cycles,
struct clock_event_device *evt)
{
struct fttmr010 *fttmr010 = to_fttmr010(evt);
u32 cr;
/* Stop */
cr = readl(fttmr010->base + TIMER_CR);
cr &= ~fttmr010->t1_enable_val;
writel(cr, fttmr010->base + TIMER_CR);
if (fttmr010->is_aspeed) {
/*
* ASPEED Timer Controller will load TIMER1_LOAD register
* into TIMER1_COUNT register when the timer is re-enabled.
*/
writel(cycles, fttmr010->base + TIMER1_LOAD);
} else {
/* Setup the match register forward in time */
cr = readl(fttmr010->base + TIMER1_COUNT);
writel(cr + cycles, fttmr010->base + TIMER1_MATCH1);
}
/* Start */
cr = readl(fttmr010->base + TIMER_CR);
cr |= fttmr010->t1_enable_val;
writel(cr, fttmr010->base + TIMER_CR);
return 0;
}
static int fttmr010_timer_shutdown(struct clock_event_device *evt)
{
struct fttmr010 *fttmr010 = to_fttmr010(evt);
u32 cr;
/* Stop */
cr = readl(fttmr010->base + TIMER_CR);
cr &= ~fttmr010->t1_enable_val;
writel(cr, fttmr010->base + TIMER_CR);
return 0;
}
static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
{
struct fttmr010 *fttmr010 = to_fttmr010(evt);
u32 cr;
/* Stop */
cr = readl(fttmr010->base + TIMER_CR);
cr &= ~fttmr010->t1_enable_val;
writel(cr, fttmr010->base + TIMER_CR);
/* Setup counter start from 0 or ~0 */
writel(0, fttmr010->base + TIMER1_COUNT);
if (fttmr010->is_aspeed) {
writel(~0, fttmr010->base + TIMER1_LOAD);
} else {
writel(0, fttmr010->base + TIMER1_LOAD);
/* Enable interrupt */
cr = readl(fttmr010->base + TIMER_INTR_MASK);
cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
cr |= TIMER_1_INT_MATCH1;
writel(cr, fttmr010->base + TIMER_INTR_MASK);
}
return 0;
}
static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
{
struct fttmr010 *fttmr010 = to_fttmr010(evt);
u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
u32 cr;
/* Stop */
cr = readl(fttmr010->base + TIMER_CR);
cr &= ~fttmr010->t1_enable_val;
writel(cr, fttmr010->base + TIMER_CR);
/* Setup timer to fire at 1/HZ intervals. */
if (fttmr010->is_aspeed) {
writel(period, fttmr010->base + TIMER1_LOAD);
} else {
cr = 0xffffffff - (period - 1);
writel(cr, fttmr010->base + TIMER1_COUNT);
writel(cr, fttmr010->base + TIMER1_LOAD);
/* Enable interrupt on overflow */
cr = readl(fttmr010->base + TIMER_INTR_MASK);
cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
cr |= TIMER_1_INT_OVERFLOW;
writel(cr, fttmr010->base + TIMER_INTR_MASK);
}
/* Start the timer */
cr = readl(fttmr010->base + TIMER_CR);
cr |= fttmr010->t1_enable_val;
writel(cr, fttmr010->base + TIMER_CR);
return 0;
}
/*
* IRQ handler for the timer
*/
static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
{
struct clock_event_device *evt = dev_id;
evt->event_handler(evt);
return IRQ_HANDLED;
}
static int __init fttmr010_common_init(struct device_node *np, bool is_aspeed)
{
struct fttmr010 *fttmr010;
int irq;
struct clk *clk;
int ret;
u32 val;
/*
* These implementations require a clock reference.
* FIXME: we currently only support clocking using PCLK
* and using EXTCLK is not supported in the driver.
*/
clk = of_clk_get_by_name(np, "PCLK");
if (IS_ERR(clk)) {
pr_err("could not get PCLK\n");
return PTR_ERR(clk);
}
ret = clk_prepare_enable(clk);
if (ret) {
pr_err("failed to enable PCLK\n");
return ret;
}
fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
if (!fttmr010) {
ret = -ENOMEM;
goto out_disable_clock;
}
fttmr010->tick_rate = clk_get_rate(clk);
fttmr010->base = of_iomap(np, 0);
if (!fttmr010->base) {
pr_err("Can't remap registers\n");
ret = -ENXIO;
goto out_free;
}
/* IRQ for timer 1 */
irq = irq_of_parse_and_map(np, 0);
if (irq <= 0) {
pr_err("Can't parse IRQ\n");
ret = -EINVAL;
goto out_unmap;
}
/*
* The Aspeed timers move bits around in the control register.
*/
if (is_aspeed) {
fttmr010->t1_enable_val = TIMER_1_CR_ASPEED_ENABLE |
TIMER_1_CR_ASPEED_INT;
fttmr010->is_aspeed = true;
} else {
fttmr010->t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT;
/*
* Reset the interrupt mask and status
*/
writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
writel(0, fttmr010->base + TIMER_INTR_STATE);
}
/*
* Enable timer 1 count up, timer 2 count up, except on Aspeed,
* where everything just counts down.
*/
if (is_aspeed)
val = TIMER_2_CR_ASPEED_ENABLE;
else {
val = TIMER_2_CR_ENABLE | TIMER_1_CR_UPDOWN |
TIMER_2_CR_UPDOWN;
}
writel(val, fttmr010->base + TIMER_CR);
/*
* Setup free-running clocksource timer (interrupts
* disabled.)
*/
local_fttmr = fttmr010;
writel(0, fttmr010->base + TIMER2_COUNT);
writel(0, fttmr010->base + TIMER2_MATCH1);
writel(0, fttmr010->base + TIMER2_MATCH2);
if (fttmr010->is_aspeed) {
writel(~0, fttmr010->base + TIMER2_LOAD);
clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
"FTTMR010-TIMER2",
fttmr010->tick_rate,
300, 32, clocksource_mmio_readl_down);
sched_clock_register(fttmr010_read_sched_clock_down, 32,
fttmr010->tick_rate);
} else {
writel(0, fttmr010->base + TIMER2_LOAD);
clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
"FTTMR010-TIMER2",
fttmr010->tick_rate,
300, 32, clocksource_mmio_readl_up);
sched_clock_register(fttmr010_read_sched_clock_up, 32,
fttmr010->tick_rate);
}
/*
* Setup clockevent timer (interrupt-driven) on timer 1.
*/
writel(0, fttmr010->base + TIMER1_COUNT);
writel(0, fttmr010->base + TIMER1_LOAD);
writel(0, fttmr010->base + TIMER1_MATCH1);
writel(0, fttmr010->base + TIMER1_MATCH2);
ret = request_irq(irq, fttmr010_timer_interrupt, IRQF_TIMER,
"FTTMR010-TIMER1", &fttmr010->clkevt);
if (ret) {
pr_err("FTTMR010-TIMER1 no IRQ\n");
goto out_unmap;
}
fttmr010->clkevt.name = "FTTMR010-TIMER1";
/* Reasonably fast and accurate clock event */
fttmr010->clkevt.rating = 300;
fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
CLOCK_EVT_FEAT_ONESHOT;
fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
fttmr010->clkevt.set_state_shutdown = fttmr010_timer_shutdown;
fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
fttmr010->clkevt.tick_resume = fttmr010_timer_shutdown;
fttmr010->clkevt.cpumask = cpumask_of(0);
fttmr010->clkevt.irq = irq;
clockevents_config_and_register(&fttmr010->clkevt,
fttmr010->tick_rate,
1, 0xffffffff);
#ifdef CONFIG_ARM
/* Also use this timer for delays */
if (fttmr010->is_aspeed)
fttmr010->delay_timer.read_current_timer =
fttmr010_read_current_timer_down;
else
fttmr010->delay_timer.read_current_timer =
fttmr010_read_current_timer_up;
fttmr010->delay_timer.freq = fttmr010->tick_rate;
register_current_timer_delay(&fttmr010->delay_timer);
#endif
return 0;
out_unmap:
iounmap(fttmr010->base);
out_free:
kfree(fttmr010);
out_disable_clock:
clk_disable_unprepare(clk);
return ret;
}
static __init int aspeed_timer_init(struct device_node *np)
{
return fttmr010_common_init(np, true);
}
static __init int fttmr010_timer_init(struct device_node *np)
{
return fttmr010_common_init(np, false);
}
TIMER_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
TIMER_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);
TIMER_OF_DECLARE(moxart, "moxa,moxart-timer", fttmr010_timer_init);
TIMER_OF_DECLARE(ast2400, "aspeed,ast2400-timer", aspeed_timer_init);
TIMER_OF_DECLARE(ast2500, "aspeed,ast2500-timer", aspeed_timer_init);