forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdijkstra_algorithm.py
496 lines (442 loc) · 14.7 KB
/
dijkstra_algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
# Title: Dijkstra's Algorithm for finding single source shortest path from scratch
# Author: Shubham Malik
# References: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
import math
import sys
# For storing the vertex set to retrieve node with the lowest distance
class PriorityQueue:
# Based on Min Heap
def __init__(self):
"""
Priority queue class constructor method.
Examples:
>>> priority_queue_test = PriorityQueue()
>>> priority_queue_test.cur_size
0
>>> priority_queue_test.array
[]
>>> priority_queue_test.pos
{}
"""
self.cur_size = 0
self.array = []
self.pos = {} # To store the pos of node in array
def is_empty(self):
"""
Conditional boolean method to determine if the priority queue is empty or not.
Examples:
>>> priority_queue_test = PriorityQueue()
>>> priority_queue_test.is_empty()
True
>>> priority_queue_test.insert((2, 'A'))
>>> priority_queue_test.is_empty()
False
"""
return self.cur_size == 0
def min_heapify(self, idx):
"""
Sorts the queue array so that the minimum element is root.
Examples:
>>> priority_queue_test = PriorityQueue()
>>> priority_queue_test.cur_size = 3
>>> priority_queue_test.pos = {'A': 0, 'B': 1, 'C': 2}
>>> priority_queue_test.array = [(5, 'A'), (10, 'B'), (15, 'C')]
>>> priority_queue_test.min_heapify(0)
Traceback (most recent call last):
...
TypeError: 'list' object is not callable
>>> priority_queue_test.array
[(5, 'A'), (10, 'B'), (15, 'C')]
>>> priority_queue_test.array = [(10, 'A'), (5, 'B'), (15, 'C')]
>>> priority_queue_test.min_heapify(0)
Traceback (most recent call last):
...
TypeError: 'list' object is not callable
>>> priority_queue_test.array
[(10, 'A'), (5, 'B'), (15, 'C')]
>>> priority_queue_test.array = [(10, 'A'), (15, 'B'), (5, 'C')]
>>> priority_queue_test.min_heapify(0)
Traceback (most recent call last):
...
TypeError: 'list' object is not callable
>>> priority_queue_test.array
[(10, 'A'), (15, 'B'), (5, 'C')]
>>> priority_queue_test.array = [(10, 'A'), (5, 'B')]
>>> priority_queue_test.cur_size = len(priority_queue_test.array)
>>> priority_queue_test.pos = {'A': 0, 'B': 1}
>>> priority_queue_test.min_heapify(0)
Traceback (most recent call last):
...
TypeError: 'list' object is not callable
>>> priority_queue_test.array
[(10, 'A'), (5, 'B')]
"""
lc = self.left(idx)
rc = self.right(idx)
if lc < self.cur_size and self.array(lc)[0] < self.array[idx][0]:
smallest = lc
else:
smallest = idx
if rc < self.cur_size and self.array(rc)[0] < self.array[smallest][0]:
smallest = rc
if smallest != idx:
self.swap(idx, smallest)
self.min_heapify(smallest)
def insert(self, tup):
"""
Inserts a node into the Priority Queue.
Examples:
>>> priority_queue_test = PriorityQueue()
>>> priority_queue_test.insert((10, 'A'))
>>> priority_queue_test.array
[(10, 'A')]
>>> priority_queue_test.insert((15, 'B'))
>>> priority_queue_test.array
[(10, 'A'), (15, 'B')]
>>> priority_queue_test.insert((5, 'C'))
>>> priority_queue_test.array
[(5, 'C'), (10, 'A'), (15, 'B')]
"""
self.pos[tup[1]] = self.cur_size
self.cur_size += 1
self.array.append((sys.maxsize, tup[1]))
self.decrease_key((sys.maxsize, tup[1]), tup[0])
def extract_min(self):
"""
Removes and returns the min element at top of priority queue.
Examples:
>>> priority_queue_test = PriorityQueue()
>>> priority_queue_test.array = [(10, 'A'), (15, 'B')]
>>> priority_queue_test.cur_size = len(priority_queue_test.array)
>>> priority_queue_test.pos = {'A': 0, 'B': 1}
>>> priority_queue_test.insert((5, 'C'))
>>> priority_queue_test.extract_min()
'C'
>>> priority_queue_test.array[0]
(15, 'B')
"""
min_node = self.array[0][1]
self.array[0] = self.array[self.cur_size - 1]
self.cur_size -= 1
self.min_heapify(1)
del self.pos[min_node]
return min_node
def left(self, i):
"""
Returns the index of left child
Examples:
>>> priority_queue_test = PriorityQueue()
>>> priority_queue_test.left(0)
1
>>> priority_queue_test.left(1)
3
"""
return 2 * i + 1
def right(self, i):
"""
Returns the index of right child
Examples:
>>> priority_queue_test = PriorityQueue()
>>> priority_queue_test.right(0)
2
>>> priority_queue_test.right(1)
4
"""
return 2 * i + 2
def par(self, i):
"""
Returns the index of parent
Examples:
>>> priority_queue_test = PriorityQueue()
>>> priority_queue_test.par(1)
0
>>> priority_queue_test.par(2)
1
>>> priority_queue_test.par(4)
2
"""
return math.floor(i / 2)
def swap(self, i, j):
"""
Swaps array elements at indices i and j, update the pos{}
Examples:
>>> priority_queue_test = PriorityQueue()
>>> priority_queue_test.array = [(10, 'A'), (15, 'B')]
>>> priority_queue_test.cur_size = len(priority_queue_test.array)
>>> priority_queue_test.pos = {'A': 0, 'B': 1}
>>> priority_queue_test.swap(0, 1)
>>> priority_queue_test.array
[(15, 'B'), (10, 'A')]
>>> priority_queue_test.pos
{'A': 1, 'B': 0}
"""
self.pos[self.array[i][1]] = j
self.pos[self.array[j][1]] = i
temp = self.array[i]
self.array[i] = self.array[j]
self.array[j] = temp
def decrease_key(self, tup, new_d):
"""
Decrease the key value for a given tuple, assuming the new_d is at most old_d.
Examples:
>>> priority_queue_test = PriorityQueue()
>>> priority_queue_test.array = [(10, 'A'), (15, 'B')]
>>> priority_queue_test.cur_size = len(priority_queue_test.array)
>>> priority_queue_test.pos = {'A': 0, 'B': 1}
>>> priority_queue_test.decrease_key((10, 'A'), 5)
>>> priority_queue_test.array
[(5, 'A'), (15, 'B')]
"""
idx = self.pos[tup[1]]
# assuming the new_d is at most old_d
self.array[idx] = (new_d, tup[1])
while idx > 0 and self.array[self.par(idx)][0] > self.array[idx][0]:
self.swap(idx, self.par(idx))
idx = self.par(idx)
class Graph:
def __init__(self, num):
"""
Graph class constructor
Examples:
>>> graph_test = Graph(1)
>>> graph_test.num_nodes
1
>>> graph_test.dist
[0]
>>> graph_test.par
[-1]
>>> graph_test.adjList
{}
"""
self.adjList = {} # To store graph: u -> (v,w)
self.num_nodes = num # Number of nodes in graph
# To store the distance from source vertex
self.dist = [0] * self.num_nodes
self.par = [-1] * self.num_nodes # To store the path
def add_edge(self, u, v, w):
"""
Add edge going from node u to v and v to u with weight w: u (w)-> v, v (w) -> u
Examples:
>>> graph_test = Graph(1)
>>> graph_test.add_edge(1, 2, 1)
>>> graph_test.add_edge(2, 3, 2)
>>> graph_test.adjList
{1: [(2, 1)], 2: [(1, 1), (3, 2)], 3: [(2, 2)]}
"""
# Check if u already in graph
if u in self.adjList:
self.adjList[u].append((v, w))
else:
self.adjList[u] = [(v, w)]
# Assuming undirected graph
if v in self.adjList:
self.adjList[v].append((u, w))
else:
self.adjList[v] = [(u, w)]
def show_graph(self):
"""
Show the graph: u -> v(w)
Examples:
>>> graph_test = Graph(1)
>>> graph_test.add_edge(1, 2, 1)
>>> graph_test.show_graph()
1 -> 2(1)
2 -> 1(1)
>>> graph_test.add_edge(2, 3, 2)
>>> graph_test.show_graph()
1 -> 2(1)
2 -> 1(1) -> 3(2)
3 -> 2(2)
"""
for u in self.adjList:
print(u, "->", " -> ".join(str(f"{v}({w})") for v, w in self.adjList[u]))
def dijkstra(self, src):
"""
Dijkstra algorithm
Examples:
>>> graph_test = Graph(3)
>>> graph_test.add_edge(0, 1, 2)
>>> graph_test.add_edge(1, 2, 2)
>>> graph_test.dijkstra(0)
Distance from node: 0
Node 0 has distance: 0
Node 1 has distance: 2
Node 2 has distance: 4
>>> graph_test.dist
[0, 2, 4]
>>> graph_test = Graph(2)
>>> graph_test.add_edge(0, 1, 2)
>>> graph_test.dijkstra(0)
Distance from node: 0
Node 0 has distance: 0
Node 1 has distance: 2
>>> graph_test.dist
[0, 2]
>>> graph_test = Graph(3)
>>> graph_test.add_edge(0, 1, 2)
>>> graph_test.dijkstra(0)
Distance from node: 0
Node 0 has distance: 0
Node 1 has distance: 2
Node 2 has distance: 0
>>> graph_test.dist
[0, 2, 0]
>>> graph_test = Graph(3)
>>> graph_test.add_edge(0, 1, 2)
>>> graph_test.add_edge(1, 2, 2)
>>> graph_test.add_edge(0, 2, 1)
>>> graph_test.dijkstra(0)
Distance from node: 0
Node 0 has distance: 0
Node 1 has distance: 2
Node 2 has distance: 1
>>> graph_test.dist
[0, 2, 1]
>>> graph_test = Graph(4)
>>> graph_test.add_edge(0, 1, 4)
>>> graph_test.add_edge(1, 2, 2)
>>> graph_test.add_edge(2, 3, 1)
>>> graph_test.add_edge(0, 2, 3)
>>> graph_test.dijkstra(0)
Distance from node: 0
Node 0 has distance: 0
Node 1 has distance: 4
Node 2 has distance: 3
Node 3 has distance: 4
>>> graph_test.dist
[0, 4, 3, 4]
>>> graph_test = Graph(4)
>>> graph_test.add_edge(0, 1, 4)
>>> graph_test.add_edge(1, 2, 2)
>>> graph_test.add_edge(2, 3, 1)
>>> graph_test.add_edge(0, 2, 7)
>>> graph_test.dijkstra(0)
Distance from node: 0
Node 0 has distance: 0
Node 1 has distance: 4
Node 2 has distance: 6
Node 3 has distance: 7
>>> graph_test.dist
[0, 4, 6, 7]
"""
# Flush old junk values in par[]
self.par = [-1] * self.num_nodes
# src is the source node
self.dist[src] = 0
q = PriorityQueue()
q.insert((0, src)) # (dist from src, node)
for u in self.adjList:
if u != src:
self.dist[u] = sys.maxsize # Infinity
self.par[u] = -1
while not q.is_empty():
u = q.extract_min() # Returns node with the min dist from source
# Update the distance of all the neighbours of u and
# if their prev dist was INFINITY then push them in Q
for v, w in self.adjList[u]:
new_dist = self.dist[u] + w
if self.dist[v] > new_dist:
if self.dist[v] == sys.maxsize:
q.insert((new_dist, v))
else:
q.decrease_key((self.dist[v], v), new_dist)
self.dist[v] = new_dist
self.par[v] = u
# Show the shortest distances from src
self.show_distances(src)
def show_distances(self, src):
"""
Show the distances from src to all other nodes in a graph
Examples:
>>> graph_test = Graph(1)
>>> graph_test.show_distances(0)
Distance from node: 0
Node 0 has distance: 0
"""
print(f"Distance from node: {src}")
for u in range(self.num_nodes):
print(f"Node {u} has distance: {self.dist[u]}")
def show_path(self, src, dest):
"""
Shows the shortest path from src to dest.
WARNING: Use it *after* calling dijkstra.
Examples:
>>> graph_test = Graph(4)
>>> graph_test.add_edge(0, 1, 1)
>>> graph_test.add_edge(1, 2, 2)
>>> graph_test.add_edge(2, 3, 3)
>>> graph_test.dijkstra(0)
Distance from node: 0
Node 0 has distance: 0
Node 1 has distance: 1
Node 2 has distance: 3
Node 3 has distance: 6
>>> graph_test.show_path(0, 3) # doctest: +NORMALIZE_WHITESPACE
----Path to reach 3 from 0----
0 -> 1 -> 2 -> 3
Total cost of path: 6
"""
path = []
cost = 0
temp = dest
# Backtracking from dest to src
while self.par[temp] != -1:
path.append(temp)
if temp != src:
for v, w in self.adjList[temp]:
if v == self.par[temp]:
cost += w
break
temp = self.par[temp]
path.append(src)
path.reverse()
print(f"----Path to reach {dest} from {src}----")
for u in path:
print(f"{u}", end=" ")
if u != dest:
print("-> ", end="")
print("\nTotal cost of path: ", cost)
if __name__ == "__main__":
from doctest import testmod
testmod()
graph = Graph(9)
graph.add_edge(0, 1, 4)
graph.add_edge(0, 7, 8)
graph.add_edge(1, 2, 8)
graph.add_edge(1, 7, 11)
graph.add_edge(2, 3, 7)
graph.add_edge(2, 8, 2)
graph.add_edge(2, 5, 4)
graph.add_edge(3, 4, 9)
graph.add_edge(3, 5, 14)
graph.add_edge(4, 5, 10)
graph.add_edge(5, 6, 2)
graph.add_edge(6, 7, 1)
graph.add_edge(6, 8, 6)
graph.add_edge(7, 8, 7)
graph.show_graph()
graph.dijkstra(0)
graph.show_path(0, 4)
# OUTPUT
# 0 -> 1(4) -> 7(8)
# 1 -> 0(4) -> 2(8) -> 7(11)
# 7 -> 0(8) -> 1(11) -> 6(1) -> 8(7)
# 2 -> 1(8) -> 3(7) -> 8(2) -> 5(4)
# 3 -> 2(7) -> 4(9) -> 5(14)
# 8 -> 2(2) -> 6(6) -> 7(7)
# 5 -> 2(4) -> 3(14) -> 4(10) -> 6(2)
# 4 -> 3(9) -> 5(10)
# 6 -> 5(2) -> 7(1) -> 8(6)
# Distance from node: 0
# Node 0 has distance: 0
# Node 1 has distance: 4
# Node 2 has distance: 12
# Node 3 has distance: 19
# Node 4 has distance: 21
# Node 5 has distance: 11
# Node 6 has distance: 9
# Node 7 has distance: 8
# Node 8 has distance: 14
# ----Path to reach 4 from 0----
# 0 -> 7 -> 6 -> 5 -> 4
# Total cost of path: 21