Skip to content

lanius/tinyik

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

57 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

tinyik

tinyik is a simple and naive inverse kinematics solver.

It defines the actuator as a set of links and revolute joints from an origin. Here is the example of a robot arm that consists of two joints that rotate around z-axis and two links of 1.0 length along x-axis:

>>> import tinyik
>>> arm = tinyik.Actuator(['z', [1., 0., 0.], 'z', [1., 0., 0.]])

Since the joint angles are zero by default, the end-effector position is at (2.0, 0, 0):

>>> arm.angles
array([ 0.,  0.])
>>> arm.ee
array([ 2.,  0.,  0.])

Sets the joint angles to 30 and 60 degrees to calculate a new position of the end-effector:

>>> import numpy as np
>>> arm.angles = [np.pi / 6, np.pi / 3]  # or np.deg2rad([30, 60])
>>> arm.ee
array([ 0.8660254,  1.5      ,  0.       ])

Sets a position of the end-effector to calculate the joint angles:

>>> arm.ee = [2 / np.sqrt(2), 2 / np.sqrt(2), 0.]
>>> arm.angles
array([  7.85398147e-01,   3.23715739e-08])
>>> np.round(np.rad2deg(arm.angles))
array([ 45.,   0.])

Optionally, it has the visualization feature. Passes the actuator to it to visualize its structure:

>>> leg = tinyik.Actuator([[.3, .0, .0], 'z', [.3, .0, .0], 'x', [.0, -.5, .0], 'x', [.0, -.5, .0]])
>>> leg.angles = np.deg2rad([30, 45, -90])
>>> tinyik.visualize(leg)

https://raw.githubusercontent.com/lanius/tinyik/master/assets/viz_structure.png

Passes with the target position, can compare before and after the IK. The gray links are before IK and the white links are after it. The red sphere is the target position:

>>> tinyik.visualize(leg, target=[.8, .0, .8])

https://raw.githubusercontent.com/lanius/tinyik/master/assets/viz_ik.png

Installation

$ pip install tinyik

With the visualization feature:

$ pip install tinyik[viz]

About

A tiny inverse kinematics solver

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages