-
Notifications
You must be signed in to change notification settings - Fork 0
/
README.EXT
997 lines (644 loc) · 25.9 KB
/
README.EXT
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
.\" README.EXT - -*- Text -*- created at: Mon Aug 7 16:45:54 JST 1995
This document explains how to make extension libraries for Ruby.
1. Basic knowledge
In C, variables have types and data do not have types. In contrast,
Ruby variables do not have static type and data themselves have
types. So, data need to be converted across the languages.
Data in Ruby represented C type `VALUE'. Each VALUE data have its
data-type.
To retrieve an C data from the VALUE, you need to:
(1) Identify VALUE's data type
(2) Convert VALUE into C data
Converting to wrong data type may cause serious problems.
1.1 Data-types
Ruby interpreter has data-types as below:
T_NIL nil
T_OBJECT ordinary object
T_CLASS class
T_MODULE module
T_FLOAT floating point number
T_STRING string
T_REGEXP regular expression
T_ARRAY array
T_FIXNUM Fixnum(31bit integer)
T_HASH associative array
T_STRUCT (Ruby) structure
T_BIGNUM multi precision integer
T_TRUE true
T_FALSE false
T_DATA data
Otherwise, there are several other types used internally:
T_ICLASS
T_MATCH
T_VARMAP
T_SCOPE
T_NODE
Most of the types are represented by C structures.
1.2 Check Data Type of the VALUE
The macro TYPE() defined in ruby.h shows data-type of the VALUE.
TYPE() returns the constant number T_XXXX described above. To handle
data-types, the code will be like:
switch (TYPE(obj)) {
case T_FIXNUM:
/* process Fixnum */
break;
case T_STRING:
/* process String */
break;
case T_ARRAY:
/* process Array */
break;
default:
/* raise exception */
rb_raise(rb_eTypeError, "not valid value");
break;
}
There is the data-type check function.
void Check_Type(VALUE value, int type)
It raises an exception, if the VALUE does not have the type specified.
There are faster check-macros for fixnums and nil.
FIXNUM_P(obj)
NIL_P(obj)
1.3 Convert VALUE into C data
The data for type T_NIL, T_FALSE, T_TRUE are nil, true, false
respectively. They are singletons for the data type.
The T_FIXNUM data is the 31bit length fixed integer (63bit length on
some machines), which can be convert to the C integer by using
FIX2INT() macro. There also be NUM2INT() which converts any Ruby
numbers into C integer. The NUM2INT() macro includes type check, so
the exception will be raised if conversion failed.
Other data types have corresponding C structures, e.g. struct RArray
for T_ARRAY etc. VALUE of the type which has corresponding structure
can be cast to retrieve the pointer to the struct. The casting macro
RXXXX for each data type like RARRAY(obj). see "ruby.h".
For example, `RSTRING(size)->len' is the way to get the size of the
Ruby String object. The allocated region can be accessed by
`RSTRING(str)->ptr'. For arrays, `RARRAY(ary)->len' and
`RARRAY(ary)->ptr' respectively.
Notice: Do not change the value of the structure directly, unless you
are responsible about the result. It will be the cause of interesting
bugs.
1.4 Convert C data into VALUE
To convert C data to the values of Ruby:
* FIXNUM
left shift 1 bit, and turn on LSB.
* Other pointer values
cast to VALUE.
You can determine whether VALUE is pointer or not, by checking LSB.
Notice Ruby does not allow arbitrary pointer value to be VALUE. They
should be pointers to the structures which Ruby knows. The known
structures are defined in <ruby.h>.
To convert C numbers to Ruby value, use these macros.
INT2FIX() for integers within 31bits.
INT2NUM() for arbitrary sized integer.
INT2NUM() converts integers into Bignums, if it is out of FIXNUM
range, but bit slower.
1.5 Manipulate Ruby data
As I already told, it is not recommended to modify object's internal
structure. To manipulate objects, use functions supplied by Ruby
interpreter. Useful functions are listed below (not all):
String functions
rb_str_new(char *ptr, int len)
Creates a new Ruby string.
rb_str_new2(char *ptr)
Creates a new Ruby string from C string. This is equivalent to
rb_str_new(ptr, strlen(ptr)).
rb_str_cat(VALUE str, char *ptr, int len)
Appends len bytes data from ptr to the Ruby string.
Array functions
rb_ary_new()
Creates an array with no element.
rb_ary_new2(int len)
Creates an array with no element, with allocating internal buffer
for len elements.
rb_ary_new3(int n, ...)
Creates an n-elements array from arguments.
rb_ary_new4(int n, VALUE *elts)
Creates an n-elements array from C array.
rb_ary_push(VALUE ary, VALUE val)
rb_ary_pop(VALUE ary)
rb_ary_shift(VALUE ary)
rb_ary_unshift(VALUE ary, VALUE val)
rb_ary_entry(VALUE ary, int idx)
Array operations. The first argument to each functions must be an
array. They may dump core if other types given.
2. Extend Ruby with C
2.1 Add new features to Ruby
You can add new features (classes, methods, etc.) to the Ruby
interpreter. Ruby provides the API to define things below:
* Classes, Modules
* Methods, Singleton Methods
* Constants
2.1.1 Class/module definition
To define class or module, use functions below:
VALUE rb_define_class(char *name, VALUE super)
VALUE rb_define_module(char *name)
These functions return the newly created class or module. You may
want to save this reference into the variable to use later.
To define nested class or module, use functions below:
VALUE rb_define_class_under(VALUE outer, char *name, VALUE super)
VALUE rb_define_module_under(VALUE outer, char *name)
2.1.2 Method/singleton method definition
To define methods or singleton methods, use functions below:
void rb_define_method(VALUE klass, char *name,
VALUE (*func)(), int argc)
void rb_define_singleton_method(VALUE object, char *name,
VALUE (*func)(), int argc)
The `argc' represents the number of the arguments to the C function,
which must be less than 17. But I believe you don't need that much. :-)
If `argc' is negative, it specifies calling sequence, not number of
the arguments.
If argc is -1, the function will be called like:
VALUE func(int argc, VALUE *argv, VALUE obj)
where argc is the actual number of arguments, argv is the C array of
the arguments, and obj is the receiver.
if argc is -2, the arguments are passed in Ruby array. The function
will be called like:
VALUE func(VALUE obj, VALUE args)
where obj is the receiver, and args is the Ruby array containing
actual arguments.
There're two more functions to define method. One is to define
private method:
void rb_define_private_method(VALUE klass, char *name,
VALUE (*func)(), int argc)
The other is to define module function, which is private AND singleton
method of the module. For example, sqrt is the module function
defined in Math module. It can be call in the form like:
Math.sqrt(4)
or
include Math
sqrt(4)
To define module function
void rb_define_module_function(VALUE module, char *name,
VALUE (*func)(), int argc)
Oh, in addition, function-like method, which is private method defined
in Kernel module, can be defined using:
void rb_define_global_function(char *name, VALUE (*func)(), int argc)
2.1.3 Constant definition
We have 2 functions to define constants:
void rb_define_const(VALUE klass, char *name, VALUE val)
void rb_define_global_const(char *name, VALUE val)
The former is to define constant under specified class/module. The
latter is to define global constant.
2.2 Use Ruby features from C
There are several ways to invoke Ruby's features from C code.
2.2.1 Evaluate Ruby Program in String
Easiest way to call Ruby's function from C program is to evaluate the
string as Ruby program. This function will do the job.
VALUE rb_eval_string(char *str)
Evaluation is done under current context, thus current local variables
of the innermost method (which is defined by Ruby) can be accessed.
2.2.2 ID or Symbol
You can invoke methods directly, without parsing the string. First I
need to explain about symbols (which data type is ID). ID is the
integer number to represent Ruby's identifiers such as variable names.
It can be accessed from Ruby in the form like:
:Identifier
You can get the symbol value from string within C code, by using
rb_intern(char *name)
In addition, the symbols for one character operators (e.g +) is the
code for that character.
2.2.3 Invoke Ruby method from C
To invoke methods directly, you can use the function below
VALUE rb_funcall(VALUE recv, ID mid, int argc, ...)
This function invokes the method of the recv, which name is specified
by the symbol mid.
2.2.4 Accessing the variables and constants
You can access class variables, and instance variables using access
functions. Also, global variables can be shared between both worlds.
There's no way to access Ruby's local variables.
The functions to access/modify instance variables are below:
VALUE rb_ivar_get(VALUE obj, ID id)
VALUE rb_ivar_set(VALUE obj, ID id, VALUE val)
id must be the symbol, which can be retrieved by rb_intern().
To access the constants of the class/module:
VALUE rb_const_get(VALUE obj, ID id)
See 2.1.3 for defining new constant.
3. Information sharing between Ruby and C
3.1 Ruby constant that C can be accessed from C
Following Ruby constants can be referred from C.
Qtrue
Qfalse
Boolean values. Qfalse is false in the C also (i.e. 0).
Qnil
Ruby nil in C scope.
3.2 Global variables shared between C and Ruby
Information can be shared between two worlds, using shared global
variables. To define them, you can use functions listed below:
void rb_define_variable(char *name, VALUE *var)
This function defines the variable which is shared by the both world.
The value of the global variable pointed by `var', can be accessed
through Ruby's global variable named `name'.
You can define read-only (from Ruby, of course) variable by the
function below.
void rb_define_readonly_variable(char *name, VALUE *var)
You can defined hooked variables. The accessor functions (getter and
setter) are called on access to the hooked variables.
void rb_define_hooked_variable(char *name, VALUE *var,
VALUE (*getter)(), VALUE (*setter)())
If you need to supply either setter or getter, just supply 0 for the
hook you don't need. If both hooks are 0, rb_define_hooked_variable()
works just like rb_define_variable().
void rb_define_virtual_variable(char *name,
VALUE (*getter)(), VALUE (*setter)())
This function defines the Ruby global variable without corresponding C
variable. The value of the variable will be set/get only by hooks.
The prototypes of the getter and setter functions are as following:
(*getter)(ID id, void *data, struct global_entry* entry);
(*setter)(VALUE val, ID id, void *data, struct global_entry* entry);
3.3 Encapsulate C data into Ruby object
To wrapping and objectify the C pointer as Ruby object (so called
DATA), use Data_Wrap_Struct().
Data_Wrap_Struct(klass, mark, free, ptr)
Data_Wrap_Struct() returns a created DATA object. The klass argument
is the class for the DATA object. The mark argument is the function
to mark Ruby objects pointed by this data. The free argument is the
function to free the pointer allocation. The functions, mark and
free, will be called from garbage collector.
You can allocate and wrap the structure in one step.
Data_Make_Struct(klass, type, mark, free, sval)
This macro returns an allocated Data object, wrapping the pointer to
the structure, which is also allocated. This macro works like:
(sval = ALLOC(type), Data_Wrap_Struct(klass, mark, free, sval))
Arguments, klass, mark, free, works like their counterpart of
Data_Wrap_Struct(). The pointer to allocated structure will be
assigned to sval, which should be the pointer to the type specified.
To retrieve the C pointer from the Data object, use the macro
Data_Get_Struct().
Data_Get_Struct(obj, type, sval)
The pointer to the structure will be assigned to the variable sval.
See example below for detail.
4. Example - Creating dbm extension
OK, here's the example to make extension library. This is the
extension to access dbm. The full source is included in ext/
directory in the Ruby's source tree.
(1) make the directory
% mkdir ext/dbm
Make a directory for the extension library under ext directory.
(2) create MANIFEST file
% cd ext/dbm
% touch MANIFEST
There should be MANIFEST file in the directory for the extension
library. Make empty file now.
(3) design the library
You need to design the library features, before making it.
(4) write C code.
You need to write C code for your extension library. If your library
has only one source file, choosing ``LIBRARY.c'' as a file name is
preferred. On the other hand, in case your library has plural source
files, avoid choosing ``LIBRARY.c'' for a file name. It may conflict
with intermediate file ``LIBRARY.o'' on some platforms.
Ruby will execute the initializing function named ``Init_LIBRARY'' in
the library. For example, ``Init_dbm()'' will be executed when loading
the library.
Here's the example of an initializing function.
--
Init_dbm()
{
/* define DBM class */
cDBM = rb_define_class("DBM", rb_cObject);
/* DBM includes Enumerate module */
rb_include_module(cDBM, rb_mEnumerable);
/* DBM has class method open(): arguments are received as C array */
rb_define_singleton_method(cDBM, "open", fdbm_s_open, -1);
/* DBM instance method close(): no args */
rb_define_method(cDBM, "close", fdbm_close, 0);
/* DBM instance method []: 1 argument */
rb_define_method(cDBM, "[]", fdbm_fetch, 1);
:
}
--
The dbm extension wrap dbm struct in C world using Data_Make_Struct.
--
struct dbmdata {
int di_size;
DBM *di_dbm;
};
obj = Data_Make_Struct(klass, struct dbmdata, 0, free_dbm, dbmp);
--
This code wraps dbmdata structure into Ruby object. We avoid wrapping
DBM* directly, because we want to cache size information.
To retrieve dbmdata structure from Ruby object, we define the macro below:
--
#define GetDBM(obj, dbmp) {\
Data_Get_Struct(obj, struct dbmdata, dbmp);\
if (dbmp->di_dbm == 0) closed_dbm();\
}
--
This sort of complicated macro do the retrieving and close check for
the DBM.
There are three kind of way to receiving method arguments. First, the
methods with fixed number of arguments receives arguments like this:
--
static VALUE
fdbm_delete(obj, keystr)
VALUE obj, keystr;
{
:
}
--
The first argument of the C function is the self, the rest are the
arguments to the method.
Second, the methods with arbitrary number of arguments receives
arguments like this:
--
static VALUE
fdbm_s_open(argc, argv, klass)
int argc;
VALUE *argv;
VALUE klass;
{
:
if (rb_scan_args(argc, argv, "11", &file, &vmode) == 1) {
mode = 0666; /* default value */
}
:
}
--
The first argument is the number of method arguments. the second
argument is the C array of the method arguments. And the third
argument is the receiver of the method.
You can use the function rb_scan_args() to check and retrieve the
arguments. For example "11" means, the method requires at least one
argument, and at most receives two arguments.
The methods with arbitrary number of arguments can receives arguments
by Ruby's array, like this:
--
static VALUE
fdbm_indexes(obj, args)
VALUE obj, args;
{
:
}
--
The first argument is the receiver, the second one is the Ruby array
which contains the arguments to the method.
** Notice
GC should know about global variables which refers Ruby's objects, but
not exported to the Ruby world. You need to protect them by
void rb_global_variable(VALUE *var)
(5) prepare extconf.rb
If there exists the file named extconf.rb, it will be executed to
generate Makefile. If not, compilation scheme try to generate
Makefile anyway.
The extconf.rb is the file to check compilation condition etc. You
need to put
require 'mkmf'
at the top of the file. You can use the functions below to check the
condition.
have_library(lib, func): check whether library containing function exists.
have_func(func): check whether function exists
have_header(header): check whether header file exists
create_makefile(target): generate Makefile
The value of variables below will affect Makefile.
$CFLAGS: included in CFLAGS make variable (such as -I)
$LDFLAGS: included in LDFLAGS make variable (such as -L)
If compilation condition is not fulfilled, you do not call
``create_makefile''. Makefile will not generated, compilation will
not be done.
(6) prepare depend (optional)
If the file named depend exists, Makefile will include that file to
check dependency. You can make this file by invoking
% gcc -MM *.c > depend
It's no harm. Prepare it.
(7) put file names into MANIFEST (optional)
% find * -type f -print > MANIFEST
% vi MANIFEST
Append file names into MANIFEST. The compilation scheme requires
MANIFEST only to be exist. But, you'd better take this step to
distinguish required files.
(8) generate Makefile
Try generate Makefile by:
ruby extconf.rb
You don't need this step, if you put extension library under ext
directory of the ruby source tree. In that case, compilation of the
interpreter will do this step for you.
(9) make
Type
make
to compile your extension. You don't need this step neither, if you
put extension library under ext directory of the ruby source tree.
(9) debug
You may need to rb_debug the extension. The extensions can be linked
statically by adding directory name in the ext/Setup file, so that you
can inspect the extension with the debugger.
(10) done, now you have the extension library
You can do anything you want with your library. The author of Ruby
will not claim any restriction about your code depending Ruby API.
Feel free to use, modify, distribute or sell your program.
Appendix A. Ruby source files overview
ruby language core
class.c
error.c
eval.c
gc.c
object.c
parse.y
variable.c
utility functions
dln.c
regex.c
st.c
util.c
ruby interpreter implementation
dmyext.c
inits.c
main.c
ruby.c
version.c
class library
array.c
bignum.c
compar.c
dir.c
enum.c
file.c
hash.c
io.c
marshal.c
math.c
numeric.c
pack.c
prec.c
process.c
random.c
range.c
re.c
signal.c
sprintf.c
string.c
struct.c
time.c
Appendix B. Ruby extension API reference
** Types
VALUE
The type for Ruby object. Actual structures are defined in ruby.h,
such as struct RString, etc. To refer the values in structures, use
casting macros like RSTRING(obj).
** Variables and constants
Qnil
const: nil object
Qtrue
const: true object(default true value)
Qfalse
const: false object
** C pointer wrapping
Data_Wrap_Struct(VALUE klass, void (*mark)(), void (*free)(), void *sval)
Wrap C pointer into Ruby object. If object has references to other
Ruby object, they should be marked by using mark function during GC
process. Otherwise, mark should be 0. When this object is no longer
referred by anywhere, the pointer will be discarded by free function.
Data_Make_Struct(klass, type, mark, free, sval)
This macro allocates memory using malloc(), assigns it to the variable
sval, and returns the DATA encapsulating the pointer to memory region.
Data_Get_Struct(data, type, sval)
This macro retrieves the pointer value from DATA, and assigns it to
the variable sval.
** defining class/module
VALUE rb_define_class(char *name, VALUE super)
Defines new Ruby class as subclass of super.
VALUE rb_define_class_under(VALUE module, char *name, VALUE super)
Creates new Ruby class as subclass of super, under the module's
namespace.
VALUE rb_define_module(char *name)
Defines new Ruby module.
VALUE rb_define_module_under(VALUE module, char *name, VALUE super)
Defines new Ruby module, under the module's namespace.
void rb_include_module(VALUE klass, VALUE module)
Includes module into class. If class already includes it, just
ignore.
void rb_extend_object(VALUE object, VALUE module)
Extend the object with module's attribute.
** Defining Global Variables
void rb_define_variable(char *name, VALUE *var)
Defines a global variable which is shared between C and Ruby. If name
contains the character which is not allowed to be part of the symbol,
it can't be seen from Ruby programs.
void rb_define_readonly_variable(char *name, VALUE *var)
Defines a read-only global variable. Works just like
rb_define_variable(), except defined variable is read-only.
void rb_define_virtual_variable(char *name,
VALUE (*getter)(), VALUE (*setter)())
Defines a virtual variable, whose behavior is defined by pair of C
functions. The getter function is called when the variable is
referred. The setter function is called when the value is set to the
variable. The prototype for getter/setter functions are:
VALUE getter(ID id)
void setter(VALUE val, ID id)
The getter function must return the value for the access.
void rb_define_hooked_variable(char *name, VALUE *var,
VALUE (*getter)(), VALUE (*setter)())
Defines hooked variable. It's virtual variable with C variable. The
getter is called as
VALUE getter(ID id, VALUE *var)
returning new value. The setter is called as
void setter(VALUE val, ID id, VALUE *var)
GC requires to mark the C global variables which hold Ruby values.
void rb_global_variable(VALUE *var)
Tells GC to protect these variables.
** Constant Definition
void rb_define_const(VALUE klass, char *name, VALUE val)
Defines a new constant under the class/module.
void rb_define_global_const(char *name, VALUE val)
Defines global constant. This is just work as
rb_define_const(cKernal, name, val)
** Method Definition
rb_define_method(VALUE klass, char *name, VALUE (*func)(), int argc)
Defines a method for the class. func is the function pointer. argc
is the number of arguments. if argc is -1, the function will receive
3 arguments argc, argv, and self. if argc is -2, the function will
receive 2 arguments, self and args, where args is the Ruby array of
the method arguments.
rb_define_private_method(VALUE klass, char *name, VALUE (*func)(), int argc)
Defines a private method for the class. Arguments are same as
rb_define_method().
rb_define_singleton_method(VALUE klass, char *name, VALUE (*func)(), int argc)
Defines a singleton method. Arguments are same as rb_define_method().
rb_scan_args(int argc, VALUE *argv, char *fmt, ...)
Retrieve argument from argc, argv. The fmt is the format string for
the arguments, such as "12" for 1 non-optional argument, 2 optional
arguments. If `*' appears at the end of fmt, it means the rest of
the arguments are assigned to corresponding variable, packed in
array.
** Invoking Ruby method
VALUE rb_funcall(VALUE recv, ID mid, int narg, ...)
Invokes the method. To retrieve mid from method name, use rb_intern().
VALUE rb_funcall2(VALUE recv, ID mid, int argc, VALUE *argv)
Invokes method, passing arguments by array of values.
VALUE rb_eval_string(char *str)
Compiles and executes the string as Ruby program.
ID rb_intern(char *name)
Returns ID corresponding the name.
char *rb_id2name(ID id)
Returns the name corresponding ID.
char *rb_class2name(VALUE klass)
Returns the name of the class.
int rb_respond_to(VALUE object, ID id)
Returns true if the object responds to the message specified by id.
** Instance Variables
VALUE rb_iv_get(VALUE obj, char *name)
Retrieve the value of the instance variable. If the name is not
prefixed by `@', that variable shall be inaccessible from Ruby.
VALUE rb_iv_set(VALUE obj, char *name, VALUE val)
Sets the value of the instance variable.
** Control Structure
VALUE rb_iterate(VALUE (*func1)(), void *arg1, VALUE (*func2)(), void *arg2)
Calls the function func1, supplying func2 as the block. func1 will be
called with the argument arg1. func2 receives the value from yield as
the first argument, arg2 as the second argument.
VALUE rb_yield(VALUE val)
Evaluates the block with value val.
VALUE rb_rescue(VALUE (*func1)(), void *arg1, VALUE (*func2)(), void *arg2)
Calls the function func1, with arg1 as the argument. If exception
occurs during func1, it calls func2 with arg2 as the argument. The
return value of rb_rescue() is the return value from func1 if no
exception occurs, from func2 otherwise.
VALUE rb_ensure(VALUE (*func1)(), void *arg1, void (*func2)(), void *arg2)
Calls the function func1 with arg1 as the argument, then calls func2
with arg2, whenever execution terminated. The return value from
rb_ensure() is that of func1.
** Exceptions and Errors
void rb_warn(char *fmt, ...)
Prints warning message according to the printf-like format.
void rb_warning(char *fmt, ...)
Prints warning message according to the printf-like format, if
$VERBOSE is true.
void rb_raise(VALUE exception, char *fmt, ...)
Raises an exception of class exception. The fmt is the format string
just like printf().
void rb_fatal(char *fmt, ...)
Raises fatal error, terminates the interpreter. No exception handling
will be done for fatal error, but ensure blocks will be executed.
void rb_bug(char *fmt, ...)
Terminates the interpreter immediately. This function should be
called under the situation caused by the bug in the interpreter. No
exception handling nor ensure execution will be done.
** Initialize and Starts the Interpreter
The embedding API are below (not needed for extension libraries):
void ruby_init()
Initializes the interpreter.
void ruby_options(int argc, char **argv)
Process command line arguments for the interpreter.
void ruby_run()
Starts execution of the interpreter.
void ruby_script(char *name)
Specifies the name of the script ($0).
Appendix B. Functions Available in extconf.rb
These functions are available in extconf.rb:
have_library(lib, func)
Checks whether library which contains specified function exists.
Returns true if the library exists.
have_func(func)
Checks whether func exists. Returns true if the function exists. To
check functions in the additional library, you need to check that
library first using have_library().
have_header(header)
Checks for the header files. Returns true if the header file exists.
create_makefile(target)
Generates the Makefile for the extension library. If you don't invoke
this method, the compilation will not be done.
/*
* Local variables:
* fill-column: 70
* end:
*/