forked from szcf-weiya/ESL-CN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmkdocs.yml
236 lines (204 loc) · 16.3 KB
/
mkdocs.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
pages:
- 主页: 'index.md'
- 上篇:
- 序言:
- 第二版序言: 'Preface/2016-07-20-Preface-to-the-Second-Edition.md'
- 第一版序言: 'Preface/2016-07-21-Preface-to-the-First-Edition.md'
- 1 简介:
- 1.1 导言: '01 Introduction/2016-07-26-Chapter-1-Introduction.md'
- 2 监督学习概要:
- 2.1 导言: '02 Overview of Supervised Learning/2.1 Introduction.md'
- 2.2 变量类型和术语: '02 Overview of Supervised Learning/2.2 Variable Types and Terminology.md'
- 2.3 两种预测的简单方法: '02 Overview of Supervised Learning/2.3 Two Simple Approaches to Prediction.md'
- 2.4 统计判别理论: '02 Overview of Supervised Learning/2.4 Statistical Decision Theory.md'
- 2.5 高维问题的局部方法: '02 Overview of Supervised Learning/2.5 Local Methods in High Dimensions.md'
- 2.6 统计模型,监督学习和函数逼近: '02 Overview of Supervised Learning/2.6 Statistical Models, Supervised Learning and Function Approximation.md'
- 2.7 结构化的回归模型: '02 Overview of Supervised Learning/2.7 Structured Regression Models.md'
- 2.8 限制性估计的类别: '02 Overview of Supervised Learning/2.8 Classes of Restricted Estimators.md'
- 2.9 模型选择和偏差-方差的权衡: '02 Overview of Supervised Learning/2.9 Model Selection and the Bias-Variance Tradeoff.md'
- 文献笔记: '02 Overview of Supervised Learning/Bibliographic Notes.md'
- 3 回归的线性方法:
- 3.1 导言: '03 Linear Methods for Regression/3.1 Introduction.md'
- 3.2 线性回归模型和最小二乘法: '03 Linear Methods for Regression/3.2 Linear Regression Models and Least Squares.md'
- 3.3 子集的选择: '03 Linear Methods for Regression/3.3 Subset Selection.md'
- 3.4 收缩的方法: '03 Linear Methods for Regression/3.4 Shrinkage Methods.md'
- 3.5 运用派生输入方向的方法: '03 Linear Methods for Regression/3.5 Methods Using Derived Input Directions.md'
- 3.6 选择和收缩方法的比较: '03 Linear Methods for Regression/3.6 A Comparison of the Selection and Shrinkage Methods.md'
- 3.7 多重输出的收缩和选择: '03 Linear Methods for Regression/3.7 Multiple Outcome Shrinkage and Selection.md'
- 3.8 Lasso和相关路径算法的补充: '03 Linear Methods for Regression/3.8 More on the Lasso and Related Path Algorithms.md'
- 3.9 计算上的考虑: '03 Linear Methods for Regression/3.9 Computational Considerations.md'
- 文献笔记: '03 Linear Methods for Regression/Bibliographic Notes.md'
- 4 分类的线性方法:
- 4.1 导言: '04 Linear Methods for Classification/4.1 Introduction.md'
- 4.2 指示矩阵的线性回归: '04 Linear Methods for Classification/4.2 Linear Regression of an Indicator Matrix.md'
- 4.3 线性判别分析: '04 Linear Methods for Classification/4.3 Linear Discriminant Analysis.md'
- 4.4 逻辑斯蒂回归: '04 Linear Methods for Classification/4.4 Logistic Regression.md'
- 4.5 分离超平面: '04 Linear Methods for Classification/4.5 Separating Hyperplanes.md'
- 文献笔记: '04 Linear Methods for Classification/Bibliographic Notes.md'
- 5 基展开和正规化:
- 5.1 导言: '05 Basis Expansions and Regularization/5.1 Introduction.md'
- 5.2 分段多项式和样条: '05 Basis Expansions and Regularization/5.2 Piecewise Polynomials and Splines.md'
- 5.3 滤波和特征提取: '05 Basis Expansions and Regularization/5.3 Filtering and Feature Extraction.md'
- 5.4 光滑样条: '05 Basis Expansions and Regularization/5.4 Smoothing Splines.md'
- 5.5 光滑参数的自动选择: '05 Basis Expansions and Regularization/5.5-Automatic-Selection-of-the-Smoothing-Parameters.md'
- 5.6 非参逻辑斯蒂回归: '05 Basis Expansions and Regularization/5.6 Nonparametric Logistic Regression.md'
- 5.7 多维样条: '05 Basis Expansions and Regularization/5.7-Multidimensional-Splines.md'
- 5.8 正则化和再生核希尔伯特空间理论: '05 Basis Expansions and Regularization/5.8-Regularization-and-Reproducing-Kernel-Hibert-Spaces.md'
- 5.9 小波光滑: '05 Basis Expansions and Regularization/5.8-Regularization-and-Reproducing-Kernel-Hibert-Spaces.md'
- 文献笔记: '05 Basis Expansions and Regularization/Bibliographic Notes.md'
- 附录-B样条的计算: '05 Basis Expansions and Regularization/Appendix-Computations-for-B-splines.md'
- 6 核光滑方法:
- 6.0 导言: '06 Kernel Smoothing Methods/6.0 Introduction.md'
- 6.1 一维核光滑器: '06 Kernel Smoothing Methods/6.1 One-Dimensional Kernel Smoothers.md'
- 6.2 选择核的宽度: '06 Kernel Smoothing Methods/6.2 Selecting the Width of the Kernel.md'
- 6.3 $R^p$中的局部回归: '06 Kernel Smoothing Methods/6.3 Local Regression in R^p.md'
- 6.4 $R^p$中的结构化局部回归模型: '06 Kernel Smoothing Methods/6.4 Structured Local Regression Models in R^p.md'
- 6.5 局部似然和其他模型: '06 Kernel Smoothing Methods/6.5 Local Likelihood and Other Models.md'
- 6.6 核密度估计和分类: '06 Kernel Smoothing Methods/6.6 Kernel Density Estimation and Classification.md'
- 6.7 径向基函数和核: '06 Kernel Smoothing Methods/6.7 Radial Basis Functions and Kernels.md'
- 6.8 混合模型的密度估计和分类: '06 Kernel Smoothing Methods/6.8-Mixture-Models-for-Density-Estimation-and-Classification.md'
- 6.9 计算上的考虑: '06 Kernel Smoothing Methods/6.9-Computational-Consoderations.md'
- 文献笔记: '06 Kernel Smoothing Methods/Bibliographic Notes.md'
- 中篇:
- 7 模型评估及选择:
- 7.1 导言: '07 Model Assessment and Selection/7.1 Introduction.md'
- 7.2 偏差,方差和模型复杂度: '07 Model Assessment and Selection/7.2 Bias, Variance and Model Complexity.md'
- 7.3 偏差-方差分解: '07 Model Assessment and Selection/7.3 The Bias-Variance Decomposition.md'
- 7.4 测试误差率的optimism: '07 Model Assessment and Selection/7.4 Optimism of the Training Error Rate.md'
- 7.5 样本内预测误差的估计: '07 Model Assessment and Selection/7.5 Estimates of In-Sample Prediction Error.md'
- 7.6 参数的有效个数: '07 Model Assessment and Selection/7.6 The Effective Number of Parameters.md'
- 7.7 贝叶斯方法和BIC: '07 Model Assessment and Selection/7.7 The Bayesian Approach and BIC.md'
- 7.8 最小描述长度: '07 Model Assessment and Selection/7.8 Minimum Description Length.md'
- 7.9 VC维: '07 Model Assessment and Selection/7.9 Vapnik-Chervonenkis Dimension.md'
- 7.10 交叉验证: '07 Model Assessment and Selection/7.10 Cross-Validation.md'
- 7.11 自助法: '07 Model Assessment and Selection/7.11 Bootstrap Methods.md'
- 7.12 条件测试误差或期望测试误差: '07 Model Assessment and Selection/7.12 Conditional or Expected Test Error.md'
- 文献笔记: '07 Model Assessment and Selection/Bibliographic Notes.md'
- 8 模型推断和平均:
- 8.1 导言: '08 Model Inference and Averaging/8.1 Introduction.md'
- 8.2 自助法和最大似然法: '08 Model Inference and Averaging/8.2 The Bootstrap and Maximum Likelihood Methods.md'
- 8.3 贝叶斯方法: '08 Model Inference and Averaging/8.3 Bayesian Methods.md'
- 8.4 自助法和贝叶斯推断之间的关系: '08 Model Inference and Averaging/8.4 Relationship Between the Bootstrap and Bayesian Inference.md'
- 8.5 EM算法: '08 Model Inference and Averaging/8.5 The EM Algorithm.md'
- 8.6 MCMC向后采样: '08 Model Inference and Averaging/8.6 MCMC for Sampling from the Posterior.md'
- 8.7 袋装法: '08 Model Inference and Averaging/8.7 Bagging.md'
- 8.8 模型平均和堆栈: '08 Model Inference and Averaging/8.8 Model Averaging and Stacking.md'
- 8.9 随机搜索: '08 Model Inference and Averaging/8.9 Stochastic Search.md'
- 文献笔记: '08 Model Inference and Averaging/Bibliographic Notes.md'
- 9 增广模型,树,以及相关方法:
- 9.0 导言: '09 Additive Models, Trees, and Related Methods/9.0 Introduction.md'
- 9.1 广义加性模型: '09 Additive Models, Trees, and Related Methods/9.1 Generalized Additive Models.md'
- 9.2 基于树的方法: '09 Additive Models, Trees, and Related Methods/9.2 Tree-Based Methods(CART).md'
- 9.3 耐心规则归纳法: '09 Additive Models, Trees, and Related Methods/9.3 PRIM(Bump Hunting).md'
- 9.4 多变量自适应回归样条: '09 Additive Models, Trees, and Related Methods/9.4 MARS(Multivariate Adaptive Regression Splines).md'
- 9.5 专家的系统混合: '09 Additive Models, Trees, and Related Methods/9.5 Hierarchical Mixtures of Experts.md'
- 9.6 缺失数据: '09 Additive Models, Trees, and Related Methods/9.6 Missing Data.md'
- 9.7 计算上的考虑: '09 Additive Models, Trees, and Related Methods/9.7 Computational Considerations.md'
- 文献笔记: '09 Additive Models, Trees, and Related Methods/Bibliographic Notes.md'
- 10 增强和加性树:
- 10.1 增强方法: '10 Boosting and Additive Trees/10.1 Boosting Methods.md'
- 10.2 boosting拟合可加模型: '10 Boosting and Additive Trees/10.2 Boosting Fits an Additive Model.md'
- 10.3 向前逐步加性建模: '10 Boosting and Additive Trees/10.3 Forward Stagewise Additive Modeling.md'
- 10.4 指数损失和AdaBoost: '10 Boosting and Additive Trees/10.4 Exponential Loss and AdaBoost.md'
- 10.5 为什么是指数损失: '10 Boosting and Additive Trees/10.5 Why Exponential Loss.md'
- 10.6 损失函数和鲁棒性: '10 Boosting and Additive Trees/10.6 Loss Functions and Robustness.md'
- 10.7 数据挖掘的现货方法: '10 Boosting and Additive Trees/10.7 Off-the-Shelf Procedures for Data Mining.md'
- 10.8 垃圾邮件的例子: '10 Boosting and Additive Trees/10.8 Spam Data.md'
- 10.9 boosting树: '10 Boosting and Additive Trees/10.9 Boosting Trees.md'
- 10.10 利用梯度boosting的数值优化: '10 Boosting and Additive Trees/10.10 Numerical Optimization via Gradient Boosting.md'
- 10.11 大小合适的boosting树: '10 Boosting and Additive Trees/10.11 Right-Sized Trees for Boosting.md'
- 10.12 正则化: '10 Boosting and Additive Trees/10.12 Regularization.md'
- 文献笔记: '10 Boosting and Additive Trees/Bibliographic Notes.md'
- 11 神经网络:
- 11.1 导言: '11 Neural Networks/11.1 Introduction.md'
- 11.2 投影寻踪回归: '11 Neural Networks/11.2 Projection Pursuit Regression.md'
- 11.3 神经网络: '11 Neural Networks/11.3 Neural Networks.md'
- 11.4 拟合神经网络: '11 Neural Networks/11.4 Fitting Neural Networks.md'
- 11.5 训练神经网络的一些问题: '11 Neural Networks/11.5 Some Issues in Training Neural Networks.md'
- 11.6 模拟数据的例子: '11 Neural Networks/11.6 Example of Simulated Data.md'
- 11.7 邮编数字的例子: '11 Neural Networks/11.7-Example-ZIP-Code-Data.md'
- 文献笔记: '11 Neural Networks/Bibliographic Notes.md'
- 12 支持向量机和灵活的判别方法:
- 12.1 导言: '12 Support Vector Machines and Flexible Discriminants/12.1 Introduction.md'
- 12.2 支持向量分类器: '12 Support Vector Machines and Flexible Discriminants/12.2 The Support Vector Classifier.md'
- 12.3 支持向量机和核: '12 Support Vector Machines and Flexible Discriminants/12.3 Support Vector Machines and Kernels.md'
- 文献笔记: '12 Support Vector Machines and Flexible Discriminants/Bibliographic Notes.md'
- 下篇:
- 13 原型方法和最近邻:
- 13.1 导言: '13 Prototype Methods and Nearest-Neighbors/13.1 Introduction.md'
- 13.2 原型方法: '13 Prototype Methods and Nearest-Neighbors/13.2 Prototype Methods.md'
- 13.3 k最近邻分类器: '13 Prototype Methods and Nearest-Neighbors/13.3 k-Nearest-Neighbor Classifiers.md'
- 13.4 自适应的最近邻方法: '13 Prototype Methods and Nearest-Neighbors/13.4 Adaptive Nearest-Neighbor Methods.md'
- 13.5 计算上的考虑: '13 Prototype Methods and Nearest-Neighbors/13.5 Computational Considerations.md'
- 文献笔记: '13 Prototype Methods and Nearest-Neighbors/Bibliographic Notes.md'
- 14 非监督学习:
- 14.1 导言: '14 Unsupervised Learning/14.1 Introduction.md'
- 14.2 关联规则: '14 Unsupervised Learning/14.2 Association Rules.md'
- 14.3 聚类分析: '14 Unsupervised Learning/14.3 Cluster Analysis.md'
- 14.4 自组织图: '14 Unsupervised Learning/14.4 Self-Organizing Maps.md'
- 14.5 主成分,主曲线以及主曲面: '14 Unsupervised Learning/14.5-Principal-Components-Curves-and-Surfaces.md'
- 14.6 非负矩阵分解: '14 Unsupervised Learning/14.6 Non-negative Matrix Factorization.md'
- 14.7 独立成分分析和探索投射寻踪: '14 Unsupervised Learning/14.7 Independent Component Analysis and Exploratory Projection Pursuit.md'
- 14.8 多维缩放: '14 Unsupervised Learning/14.8 Multidimensional Scaling.md'
- 14.9 非线性降维和局部多维缩放: '14 Unsupervised Learning/14.9 Nonlinear Dimension Reduction and Local Multidimensional Scaling.md'
- 14.10 谷歌的PageRank算法: '14 Unsupervised Learning/14.10 The Google PageRank Algorithm.md'
- 文献笔记: '14 Unsupervised Learning/Bibliographic Notes.md'
- 15 随机森林:
- 15.1 导言: '15 Random Forests/15.1 Introduction.md'
- 15.2 随机森林的定义: '15 Random Forests/15.2 Definition of Random Forests.md'
- 15.3 随机森林的细节: '15 Random Forests/15.3 Details of Random Forests.md'
- 15.4 随机森林的分析: '15 Random Forests/15.4-Analysis-of-Random-Forests.md'
- 文献笔记: '15 Random Forests/Bibliographic Notes.md'
- 16 集成学习:
- 16.1 导言: '16 Ensemble Learning/16.1 Introduction.md'
- 16.2 增强和正则路径: '16 Ensemble Learning/16.2 Boosting and Regularization Paths.md'
- 16.3 学习集成: '16 Ensemble Learning/16.3 Learning Ensembles.md'
- 文献笔记: '16 Ensemble Learning/Bibliographic Notes.md'
- 17 无向图模型:
- 17.1 导言: '17 Undirected Graphical Models/17.1 Introduction.md'
- 17.2 马尔科夫图及其性质: '17 Undirected Graphical Models/17.2 Markov Graphs and Their Properties.md'
- 17.3 连续变量的无向图模型: '17 Undirected Graphical Models/17.3 Undirected Graphical Models for Continuous Variables.md'
- 17.4 离散变量的无向图模型: '17 Undirected Graphical Models/17.4 Undirected Graphical Models for Discrete Variables.md'
- 文献笔记: '17 Undirected Graphical Models/Bibliographic Notes.md'
- 18 高维问题:
- 18.1 当p大于N: '18 High-Dimensional Problems/18.1 When p is Much Bigger than N.md'
- 18.2 对角线性判别分析和最近收缩重心: '18 High-Dimensional Problems/18.2 Diagonal Linear Discriminant Analysis and Nearest Shrunken Centroids.md'
- 18.3 二次正则的线性分类器: '18 High-Dimensional Problems/18.3 Linear Classifiers with Quadratic Regularization.md'
- 18.4 一次正则的线性分类器: '18 High-Dimensional Problems/18.4 Linear Classifiers with L1 Regularization.md'
- 18.5 当特征不可用时的分类: '18 High-Dimensional Problems/18.5 Classification When Features are Unavailable.md'
- 18.6 有监督的主成分: '18 High-Dimensional Problems/18.6 High-Dimensional Regression.md'
- 18.7 特征评估和多重检验问题: '18 High-Dimensional Problems/18.7 Feature Assessment and the Multiple-Testing Problem.md'
- 文献笔记: '18 High-Dimensional Problems/Bioliographic Notes.md'
site_name: 'ESL CN'
site_description: 'The Elements of Statistical Learning(ESL) 的中文笔记'
#site_url: https://szcf-weiya.github.io/ESL-CN/
site_url: https://esl.hohoweiya.xyz
repo_url: https://github.com/szcf-weiya
url_en: https://stats.hohoweiya.xyz
url_cn: https://blog.hohoweiya.xyz
website_en: Blog
website_cn: 随笔
copyright: 'Copyright © 2016-2018 weiya'
markdown_extensions:
- admonition
- smarty
- sane_lists
- mdx_math
- footnotes
- meta
- pymdownx.critic
- pymdownx.emoji:
emoji_generator: !!python/name:pymdownx.emoji.to_svg
extra_css:
- css/newsprint.css
- css/admonition_fix.css
#extra_javascript:
# - js/mathjax.js
#docs_dir: 'docs'
extra_templates:
- sitemap.xml
theme:
name: mkdocs
custom_dir: yeti
#theme_dir: 'yeti'
use_directory_urls: false