forked from jeremyhu/llvm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathllvm-rtdyld.cpp
756 lines (620 loc) · 25.8 KB
/
llvm-rtdyld.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
//===-- llvm-rtdyld.cpp - MCJIT Testing Tool ------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is a testing tool for use with the MC-JIT LLVM components.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/StringMap.h"
#include "llvm/DebugInfo/DIContext.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/ExecutionEngine/RuntimeDyldChecker.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Object/MachO.h"
#include "llvm/Object/SymbolSize.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Memory.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/Signals.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/raw_ostream.h"
#include <list>
#include <system_error>
using namespace llvm;
using namespace llvm::object;
static cl::list<std::string>
InputFileList(cl::Positional, cl::ZeroOrMore,
cl::desc("<input file>"));
enum ActionType {
AC_Execute,
AC_PrintObjectLineInfo,
AC_PrintLineInfo,
AC_PrintDebugLineInfo,
AC_Verify
};
static cl::opt<ActionType>
Action(cl::desc("Action to perform:"),
cl::init(AC_Execute),
cl::values(clEnumValN(AC_Execute, "execute",
"Load, link, and execute the inputs."),
clEnumValN(AC_PrintLineInfo, "printline",
"Load, link, and print line information for each function."),
clEnumValN(AC_PrintDebugLineInfo, "printdebugline",
"Load, link, and print line information for each function using the debug object"),
clEnumValN(AC_PrintObjectLineInfo, "printobjline",
"Like -printlineinfo but does not load the object first"),
clEnumValN(AC_Verify, "verify",
"Load, link and verify the resulting memory image."),
clEnumValEnd));
static cl::opt<std::string>
EntryPoint("entry",
cl::desc("Function to call as entry point."),
cl::init("_main"));
static cl::list<std::string>
Dylibs("dylib",
cl::desc("Add library."),
cl::ZeroOrMore);
static cl::opt<std::string>
TripleName("triple", cl::desc("Target triple for disassembler"));
static cl::opt<std::string>
MCPU("mcpu",
cl::desc("Target a specific cpu type (-mcpu=help for details)"),
cl::value_desc("cpu-name"),
cl::init(""));
static cl::list<std::string>
CheckFiles("check",
cl::desc("File containing RuntimeDyld verifier checks."),
cl::ZeroOrMore);
static cl::opt<uint64_t>
PreallocMemory("preallocate",
cl::desc("Allocate memory upfront rather than on-demand"),
cl::init(0));
static cl::opt<uint64_t>
TargetAddrStart("target-addr-start",
cl::desc("For -verify only: start of phony target address "
"range."),
cl::init(4096), // Start at "page 1" - no allocating at "null".
cl::Hidden);
static cl::opt<uint64_t>
TargetAddrEnd("target-addr-end",
cl::desc("For -verify only: end of phony target address range."),
cl::init(~0ULL),
cl::Hidden);
static cl::opt<uint64_t>
TargetSectionSep("target-section-sep",
cl::desc("For -verify only: Separation between sections in "
"phony target address space."),
cl::init(0),
cl::Hidden);
static cl::list<std::string>
SpecificSectionMappings("map-section",
cl::desc("For -verify only: Map a section to a "
"specific address."),
cl::ZeroOrMore,
cl::Hidden);
static cl::list<std::string>
DummySymbolMappings("dummy-extern",
cl::desc("For -verify only: Inject a symbol into the extern "
"symbol table."),
cl::ZeroOrMore,
cl::Hidden);
static cl::opt<bool>
PrintAllocationRequests("print-alloc-requests",
cl::desc("Print allocation requests made to the memory "
"manager by RuntimeDyld"),
cl::Hidden);
/* *** */
// A trivial memory manager that doesn't do anything fancy, just uses the
// support library allocation routines directly.
class TrivialMemoryManager : public RTDyldMemoryManager {
public:
SmallVector<sys::MemoryBlock, 16> FunctionMemory;
SmallVector<sys::MemoryBlock, 16> DataMemory;
uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID,
StringRef SectionName) override;
uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID, StringRef SectionName,
bool IsReadOnly) override;
void *getPointerToNamedFunction(const std::string &Name,
bool AbortOnFailure = true) override {
return nullptr;
}
bool finalizeMemory(std::string *ErrMsg) override { return false; }
void addDummySymbol(const std::string &Name, uint64_t Addr) {
DummyExterns[Name] = Addr;
}
JITSymbol findSymbol(const std::string &Name) override {
auto I = DummyExterns.find(Name);
if (I != DummyExterns.end())
return JITSymbol(I->second, JITSymbolFlags::Exported);
return RTDyldMemoryManager::findSymbol(Name);
}
void registerEHFrames(uint8_t *Addr, uint64_t LoadAddr,
size_t Size) override {}
void deregisterEHFrames(uint8_t *Addr, uint64_t LoadAddr,
size_t Size) override {}
void preallocateSlab(uint64_t Size) {
std::string Err;
sys::MemoryBlock MB = sys::Memory::AllocateRWX(Size, nullptr, &Err);
if (!MB.base())
report_fatal_error("Can't allocate enough memory: " + Err);
PreallocSlab = MB;
UsePreallocation = true;
SlabSize = Size;
}
uint8_t *allocateFromSlab(uintptr_t Size, unsigned Alignment, bool isCode) {
Size = alignTo(Size, Alignment);
if (CurrentSlabOffset + Size > SlabSize)
report_fatal_error("Can't allocate enough memory. Tune --preallocate");
uintptr_t OldSlabOffset = CurrentSlabOffset;
sys::MemoryBlock MB((void *)OldSlabOffset, Size);
if (isCode)
FunctionMemory.push_back(MB);
else
DataMemory.push_back(MB);
CurrentSlabOffset += Size;
return (uint8_t*)OldSlabOffset;
}
private:
std::map<std::string, uint64_t> DummyExterns;
sys::MemoryBlock PreallocSlab;
bool UsePreallocation = false;
uintptr_t SlabSize = 0;
uintptr_t CurrentSlabOffset = 0;
};
uint8_t *TrivialMemoryManager::allocateCodeSection(uintptr_t Size,
unsigned Alignment,
unsigned SectionID,
StringRef SectionName) {
if (PrintAllocationRequests)
outs() << "allocateCodeSection(Size = " << Size << ", Alignment = "
<< Alignment << ", SectionName = " << SectionName << ")\n";
if (UsePreallocation)
return allocateFromSlab(Size, Alignment, true /* isCode */);
std::string Err;
sys::MemoryBlock MB = sys::Memory::AllocateRWX(Size, nullptr, &Err);
if (!MB.base())
report_fatal_error("MemoryManager allocation failed: " + Err);
FunctionMemory.push_back(MB);
return (uint8_t*)MB.base();
}
uint8_t *TrivialMemoryManager::allocateDataSection(uintptr_t Size,
unsigned Alignment,
unsigned SectionID,
StringRef SectionName,
bool IsReadOnly) {
if (PrintAllocationRequests)
outs() << "allocateDataSection(Size = " << Size << ", Alignment = "
<< Alignment << ", SectionName = " << SectionName << ")\n";
if (UsePreallocation)
return allocateFromSlab(Size, Alignment, false /* isCode */);
std::string Err;
sys::MemoryBlock MB = sys::Memory::AllocateRWX(Size, nullptr, &Err);
if (!MB.base())
report_fatal_error("MemoryManager allocation failed: " + Err);
DataMemory.push_back(MB);
return (uint8_t*)MB.base();
}
static const char *ProgramName;
static void ErrorAndExit(const Twine &Msg) {
errs() << ProgramName << ": error: " << Msg << "\n";
exit(1);
}
static void loadDylibs() {
for (const std::string &Dylib : Dylibs) {
if (!sys::fs::is_regular_file(Dylib))
report_fatal_error("Dylib not found: '" + Dylib + "'.");
std::string ErrMsg;
if (sys::DynamicLibrary::LoadLibraryPermanently(Dylib.c_str(), &ErrMsg))
report_fatal_error("Error loading '" + Dylib + "': " + ErrMsg);
}
}
/* *** */
static int printLineInfoForInput(bool LoadObjects, bool UseDebugObj) {
assert(LoadObjects || !UseDebugObj);
// Load any dylibs requested on the command line.
loadDylibs();
// If we don't have any input files, read from stdin.
if (!InputFileList.size())
InputFileList.push_back("-");
for (auto &File : InputFileList) {
// Instantiate a dynamic linker.
TrivialMemoryManager MemMgr;
RuntimeDyld Dyld(MemMgr, MemMgr);
// Load the input memory buffer.
ErrorOr<std::unique_ptr<MemoryBuffer>> InputBuffer =
MemoryBuffer::getFileOrSTDIN(File);
if (std::error_code EC = InputBuffer.getError())
ErrorAndExit("unable to read input: '" + EC.message() + "'");
Expected<std::unique_ptr<ObjectFile>> MaybeObj(
ObjectFile::createObjectFile((*InputBuffer)->getMemBufferRef()));
if (!MaybeObj) {
std::string Buf;
raw_string_ostream OS(Buf);
logAllUnhandledErrors(MaybeObj.takeError(), OS, "");
OS.flush();
ErrorAndExit("unable to create object file: '" + Buf + "'");
}
ObjectFile &Obj = **MaybeObj;
OwningBinary<ObjectFile> DebugObj;
std::unique_ptr<RuntimeDyld::LoadedObjectInfo> LoadedObjInfo = nullptr;
ObjectFile *SymbolObj = &Obj;
if (LoadObjects) {
// Load the object file
LoadedObjInfo =
Dyld.loadObject(Obj);
if (Dyld.hasError())
ErrorAndExit(Dyld.getErrorString());
// Resolve all the relocations we can.
Dyld.resolveRelocations();
if (UseDebugObj) {
DebugObj = LoadedObjInfo->getObjectForDebug(Obj);
SymbolObj = DebugObj.getBinary();
LoadedObjInfo.reset();
}
}
std::unique_ptr<DIContext> Context(
new DWARFContextInMemory(*SymbolObj,LoadedObjInfo.get()));
std::vector<std::pair<SymbolRef, uint64_t>> SymAddr =
object::computeSymbolSizes(*SymbolObj);
// Use symbol info to iterate functions in the object.
for (const auto &P : SymAddr) {
object::SymbolRef Sym = P.first;
Expected<SymbolRef::Type> TypeOrErr = Sym.getType();
if (!TypeOrErr) {
// TODO: Actually report errors helpfully.
consumeError(TypeOrErr.takeError());
continue;
}
SymbolRef::Type Type = *TypeOrErr;
if (Type == object::SymbolRef::ST_Function) {
Expected<StringRef> Name = Sym.getName();
if (!Name) {
// TODO: Actually report errors helpfully.
consumeError(Name.takeError());
continue;
}
Expected<uint64_t> AddrOrErr = Sym.getAddress();
if (!AddrOrErr) {
// TODO: Actually report errors helpfully.
consumeError(AddrOrErr.takeError());
continue;
}
uint64_t Addr = *AddrOrErr;
uint64_t Size = P.second;
// If we're not using the debug object, compute the address of the
// symbol in memory (rather than that in the unrelocated object file)
// and use that to query the DWARFContext.
if (!UseDebugObj && LoadObjects) {
auto SecOrErr = Sym.getSection();
if (!SecOrErr) {
// TODO: Actually report errors helpfully.
consumeError(SecOrErr.takeError());
continue;
}
object::section_iterator Sec = *SecOrErr;
StringRef SecName;
Sec->getName(SecName);
uint64_t SectionLoadAddress =
LoadedObjInfo->getSectionLoadAddress(*Sec);
if (SectionLoadAddress != 0)
Addr += SectionLoadAddress - Sec->getAddress();
}
outs() << "Function: " << *Name << ", Size = " << Size
<< ", Addr = " << Addr << "\n";
DILineInfoTable Lines = Context->getLineInfoForAddressRange(Addr, Size);
for (auto &D : Lines) {
outs() << " Line info @ " << D.first - Addr << ": "
<< D.second.FileName << ", line:" << D.second.Line << "\n";
}
}
}
}
return 0;
}
static void doPreallocation(TrivialMemoryManager &MemMgr) {
// Allocate a slab of memory upfront, if required. This is used if
// we want to test small code models.
if (static_cast<intptr_t>(PreallocMemory) < 0)
report_fatal_error("Pre-allocated bytes of memory must be a positive integer.");
// FIXME: Limit the amount of memory that can be preallocated?
if (PreallocMemory != 0)
MemMgr.preallocateSlab(PreallocMemory);
}
static int executeInput() {
// Load any dylibs requested on the command line.
loadDylibs();
// Instantiate a dynamic linker.
TrivialMemoryManager MemMgr;
doPreallocation(MemMgr);
RuntimeDyld Dyld(MemMgr, MemMgr);
// If we don't have any input files, read from stdin.
if (!InputFileList.size())
InputFileList.push_back("-");
for (auto &File : InputFileList) {
// Load the input memory buffer.
ErrorOr<std::unique_ptr<MemoryBuffer>> InputBuffer =
MemoryBuffer::getFileOrSTDIN(File);
if (std::error_code EC = InputBuffer.getError())
ErrorAndExit("unable to read input: '" + EC.message() + "'");
Expected<std::unique_ptr<ObjectFile>> MaybeObj(
ObjectFile::createObjectFile((*InputBuffer)->getMemBufferRef()));
if (!MaybeObj) {
std::string Buf;
raw_string_ostream OS(Buf);
logAllUnhandledErrors(MaybeObj.takeError(), OS, "");
OS.flush();
ErrorAndExit("unable to create object file: '" + Buf + "'");
}
ObjectFile &Obj = **MaybeObj;
// Load the object file
Dyld.loadObject(Obj);
if (Dyld.hasError()) {
ErrorAndExit(Dyld.getErrorString());
}
}
// Resove all the relocations we can.
// FIXME: Error out if there are unresolved relocations.
Dyld.resolveRelocations();
// Get the address of the entry point (_main by default).
void *MainAddress = Dyld.getSymbolLocalAddress(EntryPoint);
if (!MainAddress)
ErrorAndExit("no definition for '" + EntryPoint + "'");
// Invalidate the instruction cache for each loaded function.
for (auto &FM : MemMgr.FunctionMemory) {
// Make sure the memory is executable.
// setExecutable will call InvalidateInstructionCache.
std::string ErrorStr;
if (!sys::Memory::setExecutable(FM, &ErrorStr))
ErrorAndExit("unable to mark function executable: '" + ErrorStr + "'");
}
// Dispatch to _main().
errs() << "loaded '" << EntryPoint << "' at: " << (void*)MainAddress << "\n";
int (*Main)(int, const char**) =
(int(*)(int,const char**)) uintptr_t(MainAddress);
const char **Argv = new const char*[2];
// Use the name of the first input object module as argv[0] for the target.
Argv[0] = InputFileList[0].c_str();
Argv[1] = nullptr;
return Main(1, Argv);
}
static int checkAllExpressions(RuntimeDyldChecker &Checker) {
for (const auto& CheckerFileName : CheckFiles) {
ErrorOr<std::unique_ptr<MemoryBuffer>> CheckerFileBuf =
MemoryBuffer::getFileOrSTDIN(CheckerFileName);
if (std::error_code EC = CheckerFileBuf.getError())
ErrorAndExit("unable to read input '" + CheckerFileName + "': " +
EC.message());
if (!Checker.checkAllRulesInBuffer("# rtdyld-check:",
CheckerFileBuf.get().get()))
ErrorAndExit("some checks in '" + CheckerFileName + "' failed");
}
return 0;
}
static std::map<void *, uint64_t>
applySpecificSectionMappings(RuntimeDyldChecker &Checker) {
std::map<void*, uint64_t> SpecificMappings;
for (StringRef Mapping : SpecificSectionMappings) {
size_t EqualsIdx = Mapping.find_first_of("=");
std::string SectionIDStr = Mapping.substr(0, EqualsIdx);
size_t ComaIdx = Mapping.find_first_of(",");
if (ComaIdx == StringRef::npos)
report_fatal_error("Invalid section specification '" + Mapping +
"'. Should be '<file name>,<section name>=<addr>'");
std::string FileName = SectionIDStr.substr(0, ComaIdx);
std::string SectionName = SectionIDStr.substr(ComaIdx + 1);
uint64_t OldAddrInt;
std::string ErrorMsg;
std::tie(OldAddrInt, ErrorMsg) =
Checker.getSectionAddr(FileName, SectionName, true);
if (ErrorMsg != "")
report_fatal_error(ErrorMsg);
void* OldAddr = reinterpret_cast<void*>(static_cast<uintptr_t>(OldAddrInt));
std::string NewAddrStr = Mapping.substr(EqualsIdx + 1);
uint64_t NewAddr;
if (StringRef(NewAddrStr).getAsInteger(0, NewAddr))
report_fatal_error("Invalid section address in mapping '" + Mapping +
"'.");
Checker.getRTDyld().mapSectionAddress(OldAddr, NewAddr);
SpecificMappings[OldAddr] = NewAddr;
}
return SpecificMappings;
}
// Scatter sections in all directions!
// Remaps section addresses for -verify mode. The following command line options
// can be used to customize the layout of the memory within the phony target's
// address space:
// -target-addr-start <s> -- Specify where the phony target addres range starts.
// -target-addr-end <e> -- Specify where the phony target address range ends.
// -target-section-sep <d> -- Specify how big a gap should be left between the
// end of one section and the start of the next.
// Defaults to zero. Set to something big
// (e.g. 1 << 32) to stress-test stubs, GOTs, etc.
//
static void remapSectionsAndSymbols(const llvm::Triple &TargetTriple,
TrivialMemoryManager &MemMgr,
RuntimeDyldChecker &Checker) {
// Set up a work list (section addr/size pairs).
typedef std::list<std::pair<void*, uint64_t>> WorklistT;
WorklistT Worklist;
for (const auto& CodeSection : MemMgr.FunctionMemory)
Worklist.push_back(std::make_pair(CodeSection.base(), CodeSection.size()));
for (const auto& DataSection : MemMgr.DataMemory)
Worklist.push_back(std::make_pair(DataSection.base(), DataSection.size()));
// Apply any section-specific mappings that were requested on the command
// line.
typedef std::map<void*, uint64_t> AppliedMappingsT;
AppliedMappingsT AppliedMappings = applySpecificSectionMappings(Checker);
// Keep an "already allocated" mapping of section target addresses to sizes.
// Sections whose address mappings aren't specified on the command line will
// allocated around the explicitly mapped sections while maintaining the
// minimum separation.
std::map<uint64_t, uint64_t> AlreadyAllocated;
// Move the previously applied mappings into the already-allocated map.
for (WorklistT::iterator I = Worklist.begin(), E = Worklist.end();
I != E;) {
WorklistT::iterator Tmp = I;
++I;
AppliedMappingsT::iterator AI = AppliedMappings.find(Tmp->first);
if (AI != AppliedMappings.end()) {
AlreadyAllocated[AI->second] = Tmp->second;
Worklist.erase(Tmp);
}
}
// If the -target-addr-end option wasn't explicitly passed, then set it to a
// sensible default based on the target triple.
if (TargetAddrEnd.getNumOccurrences() == 0) {
if (TargetTriple.isArch16Bit())
TargetAddrEnd = (1ULL << 16) - 1;
else if (TargetTriple.isArch32Bit())
TargetAddrEnd = (1ULL << 32) - 1;
// TargetAddrEnd already has a sensible default for 64-bit systems, so
// there's nothing to do in the 64-bit case.
}
// Process any elements remaining in the worklist.
while (!Worklist.empty()) {
std::pair<void*, uint64_t> CurEntry = Worklist.front();
Worklist.pop_front();
uint64_t NextSectionAddr = TargetAddrStart;
for (const auto &Alloc : AlreadyAllocated)
if (NextSectionAddr + CurEntry.second + TargetSectionSep <= Alloc.first)
break;
else
NextSectionAddr = Alloc.first + Alloc.second + TargetSectionSep;
AlreadyAllocated[NextSectionAddr] = CurEntry.second;
Checker.getRTDyld().mapSectionAddress(CurEntry.first, NextSectionAddr);
}
// Add dummy symbols to the memory manager.
for (const auto &Mapping : DummySymbolMappings) {
size_t EqualsIdx = Mapping.find_first_of("=");
if (EqualsIdx == StringRef::npos)
report_fatal_error("Invalid dummy symbol specification '" + Mapping +
"'. Should be '<symbol name>=<addr>'");
std::string Symbol = Mapping.substr(0, EqualsIdx);
std::string AddrStr = Mapping.substr(EqualsIdx + 1);
uint64_t Addr;
if (StringRef(AddrStr).getAsInteger(0, Addr))
report_fatal_error("Invalid symbol mapping '" + Mapping + "'.");
MemMgr.addDummySymbol(Symbol, Addr);
}
}
// Load and link the objects specified on the command line, but do not execute
// anything. Instead, attach a RuntimeDyldChecker instance and call it to
// verify the correctness of the linked memory.
static int linkAndVerify() {
// Check for missing triple.
if (TripleName == "")
ErrorAndExit("-triple required when running in -verify mode.");
// Look up the target and build the disassembler.
Triple TheTriple(Triple::normalize(TripleName));
std::string ErrorStr;
const Target *TheTarget =
TargetRegistry::lookupTarget("", TheTriple, ErrorStr);
if (!TheTarget)
ErrorAndExit("Error accessing target '" + TripleName + "': " + ErrorStr);
TripleName = TheTriple.getTriple();
std::unique_ptr<MCSubtargetInfo> STI(
TheTarget->createMCSubtargetInfo(TripleName, MCPU, ""));
if (!STI)
ErrorAndExit("Unable to create subtarget info!");
std::unique_ptr<MCRegisterInfo> MRI(TheTarget->createMCRegInfo(TripleName));
if (!MRI)
ErrorAndExit("Unable to create target register info!");
std::unique_ptr<MCAsmInfo> MAI(TheTarget->createMCAsmInfo(*MRI, TripleName));
if (!MAI)
ErrorAndExit("Unable to create target asm info!");
MCContext Ctx(MAI.get(), MRI.get(), nullptr);
std::unique_ptr<MCDisassembler> Disassembler(
TheTarget->createMCDisassembler(*STI, Ctx));
if (!Disassembler)
ErrorAndExit("Unable to create disassembler!");
std::unique_ptr<MCInstrInfo> MII(TheTarget->createMCInstrInfo());
std::unique_ptr<MCInstPrinter> InstPrinter(
TheTarget->createMCInstPrinter(Triple(TripleName), 0, *MAI, *MII, *MRI));
// Load any dylibs requested on the command line.
loadDylibs();
// Instantiate a dynamic linker.
TrivialMemoryManager MemMgr;
doPreallocation(MemMgr);
RuntimeDyld Dyld(MemMgr, MemMgr);
Dyld.setProcessAllSections(true);
RuntimeDyldChecker Checker(Dyld, Disassembler.get(), InstPrinter.get(),
llvm::dbgs());
// If we don't have any input files, read from stdin.
if (!InputFileList.size())
InputFileList.push_back("-");
for (auto &Filename : InputFileList) {
// Load the input memory buffer.
ErrorOr<std::unique_ptr<MemoryBuffer>> InputBuffer =
MemoryBuffer::getFileOrSTDIN(Filename);
if (std::error_code EC = InputBuffer.getError())
ErrorAndExit("unable to read input: '" + EC.message() + "'");
Expected<std::unique_ptr<ObjectFile>> MaybeObj(
ObjectFile::createObjectFile((*InputBuffer)->getMemBufferRef()));
if (!MaybeObj) {
std::string Buf;
raw_string_ostream OS(Buf);
logAllUnhandledErrors(MaybeObj.takeError(), OS, "");
OS.flush();
ErrorAndExit("unable to create object file: '" + Buf + "'");
}
ObjectFile &Obj = **MaybeObj;
// Load the object file
Dyld.loadObject(Obj);
if (Dyld.hasError()) {
ErrorAndExit(Dyld.getErrorString());
}
}
// Re-map the section addresses into the phony target address space and add
// dummy symbols.
remapSectionsAndSymbols(TheTriple, MemMgr, Checker);
// Resolve all the relocations we can.
Dyld.resolveRelocations();
// Register EH frames.
Dyld.registerEHFrames();
int ErrorCode = checkAllExpressions(Checker);
if (Dyld.hasError())
ErrorAndExit("RTDyld reported an error applying relocations:\n " +
Dyld.getErrorString());
return ErrorCode;
}
int main(int argc, char **argv) {
sys::PrintStackTraceOnErrorSignal(argv[0]);
PrettyStackTraceProgram X(argc, argv);
ProgramName = argv[0];
llvm_shutdown_obj Y; // Call llvm_shutdown() on exit.
llvm::InitializeAllTargetInfos();
llvm::InitializeAllTargetMCs();
llvm::InitializeAllDisassemblers();
cl::ParseCommandLineOptions(argc, argv, "llvm MC-JIT tool\n");
switch (Action) {
case AC_Execute:
return executeInput();
case AC_PrintDebugLineInfo:
return printLineInfoForInput(/* LoadObjects */ true,/* UseDebugObj */ true);
case AC_PrintLineInfo:
return printLineInfoForInput(/* LoadObjects */ true,/* UseDebugObj */false);
case AC_PrintObjectLineInfo:
return printLineInfoForInput(/* LoadObjects */false,/* UseDebugObj */false);
case AC_Verify:
return linkAndVerify();
}
}