-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_res50unet_update_step3.py
244 lines (201 loc) · 8.69 KB
/
train_res50unet_update_step3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
'''
2022.01.19
@Yinxia Cao
@function: used for training ZY3LC on beijing, 8 bit images
training with corrected labels from scratch
'''
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
import torch
import random
import numpy as np
from tqdm import tqdm
import torch.nn as nn
from torch.utils import data
from tensorboardX import SummaryWriter #change tensorboardX
from ZY3LC_dataset import dataloader
from ZY3LC_loader import myImageFloder_8bit_binary, myImageFloder_8bit_binary_update_scratch
from metrics import SegmentationMetric, AverageMeter
import segmentation_models_pytorch as smp
import shutil
from myloss import BCE_DICE
import argparse
import cv2
def get_arguments():
parser = argparse.ArgumentParser(description="Test for binary class")
parser.add_argument("--classname", type=str, default='build',
help="oisa|grass|tree|soil|build|water|road")
args = parser.parse_args()
return args
classdict = {'oisa': 1, 'grass': 2, 'tree': 3, 'soil': 4, 'build': 5, 'water': 6, 'road': 7}
def adjust_learning_rate(optimizer, epoch):
if epoch <= 20:
lr = 0.001
elif epoch <= 40:
lr = 0.0001
else:
lr = 0.00001
# print(lr)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr #added
def main():
# Setup seeds
torch.manual_seed(1337)
torch.cuda.manual_seed(1337)
np.random.seed(1337)
random.seed(1337)
# Get args
args = get_arguments()
# Setup device
device = 'cuda'
# Setup Dataloader
filepath = 'data' # data path
train_img, train_lab, val_img, val_lab,_,_ = dataloader(filepath, split=(0.9, 0.1, 0)) # 90% for training
epochs_scratch = 50
iroot = 'runs'
logdir = os.path.join(iroot, 'res50' + args.classname + '_update', 'scratch')
os.makedirs(logdir, exist_ok=True)
writer = SummaryWriter(log_dir=logdir)
# storing updated labels
updatepath = os.path.join(iroot, 'res50' + args.classname + '_update', 'update', 'pred')
# NUM_WORKERS = 4
classes = 2 # 0, 1, 2, 3, 4, 5, 6
nchannels = 4
imgsize = 256
global best_acc
best_acc = 0
positive = 255 # values for buildings
# train with updated labels
traindataloader_scratch = torch.utils.data.DataLoader(
myImageFloder_8bit_binary_update_scratch(train_img, updatepath, aug=True, imgsize=imgsize,
channels=nchannels, positive=positive),
batch_size=32, shuffle=True, num_workers=8, pin_memory=True)
# test on the whole images
valdataloader = torch.utils.data.DataLoader(
myImageFloder_8bit_binary(val_img, val_lab, aug=False, imgsize=imgsize, channels=nchannels, positive=positive),
batch_size=32, shuffle=False, num_workers=8, pin_memory=True)
model = smp.Unet(encoder_name="resnet50", encoder_weights="imagenet",
in_channels=nchannels, classes=1).to(device)
if torch.cuda.device_count() > 1:
model = torch.nn.DataParallel(model, device_ids=range(torch.cuda.device_count()))
# print the model
start_epoch = 0
resume = os.path.join(logdir, 'checkpoint.tar')
if os.path.isfile(resume):
print("=> loading checkpoint '{}'".format(resume))
checkpoint = torch.load(resume)
model.load_state_dict(checkpoint['state_dict'])
# optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(resume, checkpoint['epoch']))
start_epoch = checkpoint['epoch']
best_acc = checkpoint['best_acc']
else:
print("=> no checkpoint found at resume")
print("=> Will start from scratch.")
# get all parameters (model parameters + task dependent log variances)
# print('Number of model parameters: {}'.format(sum([p.data.nelement() for p in model.parameters()])))
optimizer = torch.optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.999))
#weights = torch.FloatTensor([1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 5.0]).to(device) # defined
# criterion = torch.nn.CrossEntropyLoss()
criterion = BCE_DICE()
# train from scratch
for epoch in range(epochs_scratch-start_epoch):
epoch = start_epoch + epoch + 1 # current epochs
# adjust_learning_rate(optimizer, epoch)
lr = optimizer.param_groups[0]['lr']
print('epoch %d, lr: %.6f'%(epoch, lr))
# train
train_loss, train_f1, train_iou = \
train_epoch(model, criterion, traindataloader_scratch,
optimizer, device, epoch, classes)
# validate
val_loss, val_f1, val_iou = vtest_epoch(model, criterion, valdataloader, device, epoch, classes)
# save every epoch
savefilename = os.path.join(logdir, 'checkpoint.tar')
is_best = val_f1 > best_acc
best_acc = max(val_f1, best_acc) # update
torch.save({
'epoch': epoch,
'state_dict': model.module.state_dict() if hasattr(model, "module") else model.state_dict(), # multiple GPUs
'val_f1': val_f1,
'best_acc': best_acc,
}, savefilename)
# save every 10 epochs separately
if epoch%10 == 0:
torch.save({
'epoch': epoch,
'state_dict': model.module.state_dict() if hasattr(model, "module") else model.state_dict(),
'val_f1': val_f1,
'best_acc': best_acc,
}, os.path.join(logdir, 'checkpoint_'+str(epoch)+'.tar'))
if is_best:
shutil.copy(savefilename, os.path.join(logdir, 'model_best.tar'))
# write
writer.add_scalar('lr', lr, epoch)
writer.add_scalar('train/1.loss', train_loss,epoch)
writer.add_scalar('train/2.f1', train_f1, epoch)
writer.add_scalar('train/3.iou',train_iou, epoch)
writer.add_scalar('val/1.loss', val_loss, epoch)
writer.add_scalar('val/2.f1',val_f1, epoch)
writer.add_scalar('val/3.iou', val_iou, epoch)
writer.close()
# train
def train_epoch(model, criterion, dataloader, optimizer, device, epoch, classes):
model.train()
acc_total = SegmentationMetric(numClass=classes, device=device)
losses = AverageMeter()
num = len(dataloader)
pbar = tqdm(range(num), disable=False)
for idx, (images, labels) in enumerate(dataloader):
images = images.to(device, non_blocking=True)
labels = labels.to(device, non_blocking=True).unsqueeze(1)
output = model(images)
output = torch.sigmoid(output)
loss = criterion(output, labels.float())
optimizer.zero_grad()
loss.backward()
optimizer.step()
output = (output > 0.5) # N C H W
acc_total.addBatch(output, labels)
losses.update(loss.item(), images.size(0))
f1 = acc_total.F1score()[1]
iou = acc_total.IntersectionOverUnion()[1]
pbar.set_description(
'Train Epoch:{epoch:4}. Iter:{batch:4}|{iter:4}. Loss {loss:.3f}. F1 {f1:.3f}, IOU: {iou:.3f}'.format(
epoch=epoch, batch=idx, iter=num, loss=losses.avg, f1=f1, iou=iou))
pbar.update()
pbar.close()
f1 = acc_total.F1score()[1]
iou = acc_total.IntersectionOverUnion()[1]
print('epoch %d, train f1 %.3f, iou: %.3f' % (epoch, f1, iou))
return losses.avg, f1, iou
# test
def vtest_epoch(model, criterion, dataloader, device, epoch, classes):
model.eval()
acc_total = SegmentationMetric(numClass=classes, device=device)
losses = AverageMeter()
num = len(dataloader)
pbar = tqdm(range(num), disable=False)
with torch.no_grad():
for idx, (x, y_true) in enumerate(dataloader):
x = x.to(device, non_blocking =True)
y_true = y_true.to(device, non_blocking =True).unsqueeze(1)
ypred = model.forward(x)
ypred = torch.sigmoid(ypred)
loss = criterion(ypred, y_true.float())
# ypred = ypred.argmax(axis=1)
ypred = (ypred>0.5)
acc_total.addBatch(ypred, y_true)
losses.update(loss.item(), x.size(0))
f1 = acc_total.F1score()[1]
iou = acc_total.IntersectionOverUnion()[1]
pbar.set_description(
'Test Epoch:{epoch:4}. Iter:{batch:4}|{iter:4}. Loss {loss:.3f}. F1 {f1:.3f}, IOU: {iou:.3f}'.format(
epoch=epoch, batch=idx, iter=num, loss=losses.avg, f1=f1, iou=iou))
pbar.update()
pbar.close()
return losses.avg, f1, iou
if __name__=="__main__":
main()