-
Notifications
You must be signed in to change notification settings - Fork 6.4k
/
Copy pathbatch_norm_theano.py
221 lines (174 loc) · 5.77 KB
/
batch_norm_theano.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
from __future__ import print_function, division
from builtins import range
# Note: you may need to update your version of future
# sudo pip install -U future
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import theano
import theano.tensor as T
from theano.tensor.nnet.bn import batch_normalization_train, batch_normalization_test
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split
from util import get_normalized_data
def init_weight(M1, M2):
return np.random.randn(M1, M2) * np.sqrt(2.0 / M1)
class HiddenLayerBatchNorm(object):
def __init__(self, M1, M2, f):
self.M1 = M1
self.M2 = M2
self.f = f
W = init_weight(M1, M2)
gamma = np.ones(M2)
beta = np.zeros(M2)
self.W = theano.shared(W)
self.gamma = theano.shared(gamma)
self.beta = theano.shared(beta)
self.params = [self.W, self.gamma, self.beta]
# for test time
# self.running_mean = T.zeros(M2)
# self.running_var = T.zeros(M2)
self.running_mean = theano.shared(np.zeros(M2))
self.running_var = theano.shared(np.zeros(M2))
def forward(self, X, is_training):
activation = X.dot(self.W)
if is_training:
# returns:
# batch-normalized output
# batch mean
# batch variance
# running mean (for later use as population mean estimate)
# running var (for later use as population var estimate)
out, batch_mean, batch_invstd, new_running_mean, new_running_var = batch_normalization_train(
activation,
self.gamma,
self.beta,
running_mean=self.running_mean,
running_var=self.running_var,
)
self.running_update = [
(self.running_mean, new_running_mean),
(self.running_var, new_running_var),
]
# if you don't trust the built-in bn function
# batch_var = 1 / (batch_invstd * batch_invstd)
# self.running_update = [
# (self.running_mean, 0.9*self.running_mean + 0.1*batch_mean),
# (self.running_var, 0.9*self.running_var + 0.1*batch_var),
# ]
else:
out = batch_normalization_test(
activation,
self.gamma,
self.beta,
self.running_mean,
self.running_var
)
return self.f(out)
class HiddenLayer(object):
def __init__(self, M1, M2, f):
self.M1 = M1
self.M2 = M2
self.f = f
W = init_weight(M1, M2)
b = np.zeros(M2)
self.W = theano.shared(W)
self.b = theano.shared(b)
self.params = [self.W, self.b]
def forward(self, X):
return self.f(X.dot(self.W) + self.b)
def momentum_updates(cost, params, lr, mu):
grads = T.grad(cost, params)
updates = []
for p, g in zip(params, grads):
dp = theano.shared(p.get_value() * 0)
new_dp = mu*dp - lr*g
new_p = p + new_dp
updates.append((dp, new_dp))
updates.append((p, new_p))
return updates
class ANN(object):
def __init__(self, hidden_layer_sizes):
self.hidden_layer_sizes = hidden_layer_sizes
def fit(self, X, Y, Xtest, Ytest, activation=T.nnet.relu, learning_rate=1e-2, mu=0.9, epochs=15, batch_sz=100, print_period=100, show_fig=True):
X = X.astype(np.float32)
Y = Y.astype(np.int32)
# initialize hidden layers
N, D = X.shape
self.layers = []
M1 = D
for M2 in self.hidden_layer_sizes:
h = HiddenLayerBatchNorm(M1, M2, activation)
self.layers.append(h)
M1 = M2
# final layer
K = len(set(Y))
h = HiddenLayer(M1, K, T.nnet.softmax)
self.layers.append(h)
if batch_sz is None:
batch_sz = N
# collect params for later use
self.params = []
for h in self.layers:
self.params += h.params
# note! we will need to build the output differently
# for train and test (prediction)
# set up theano functions and variables
thX = T.matrix('X')
thY = T.ivector('Y')
# for training
p_y_given_x = self.forward(thX, is_training=True)
cost = -T.mean(T.log(p_y_given_x[T.arange(thY.shape[0]), thY]))
prediction = T.argmax(p_y_given_x, axis=1)
grads = T.grad(cost, self.params)
# momentum only
updates = momentum_updates(cost, self.params, learning_rate, mu)
for layer in self.layers[:-1]:
updates += layer.running_update
train_op = theano.function(
inputs=[thX, thY],
outputs=[cost, prediction],
updates=updates,
)
# for testing
test_p_y_given_x = self.forward(thX, is_training=False)
test_prediction = T.argmax(test_p_y_given_x, axis=1)
self.predict = theano.function(
inputs=[thX],
outputs=test_prediction,
)
n_batches = N // batch_sz
costs = []
for i in range(epochs):
if n_batches > 1:
X, Y = shuffle(X, Y)
for j in range(n_batches):
Xbatch = X[j*batch_sz:(j*batch_sz+batch_sz)]
Ybatch = Y[j*batch_sz:(j*batch_sz+batch_sz)]
c, p = train_op(Xbatch, Ybatch)
costs.append(c)
if (j+1) % print_period == 0:
accuracy = np.mean(p == Ybatch)
print("epoch:", i, "batch:", j, "n_batches:", n_batches, "cost:", c, "accuracy:", accuracy)
print("Train acc:", self.score(X, Y), "Test acc:", self.score(Xtest, Ytest))
if show_fig:
plt.plot(costs)
plt.show()
def forward(self, X, is_training):
out = X
for h in self.layers[:-1]:
out = h.forward(out, is_training)
out = self.layers[-1].forward(out)
return out
def score(self, X, Y):
P = self.predict(X)
return np.mean(Y == P)
def main():
# step 1: get the data and define all the usual variables
Xtrain, Xtest, Ytrain, Ytest = get_normalized_data()
ann = ANN([500, 300])
ann.fit(Xtrain, Ytrain, Xtest, Ytest, show_fig=True)
print("Train accuracy:", ann.score(Xtrain, Ytrain))
print("Test accuracy:", ann.score(Xtest, Ytest))
if __name__ == '__main__':
main()