-
Notifications
You must be signed in to change notification settings - Fork 6.4k
/
Copy pathcntk_example.py
142 lines (105 loc) · 3.2 KB
/
cntk_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# https://deeplearningcourses.com/c/data-science-deep-learning-in-theano-tensorflow
# https://www.udemy.com/data-science-deep-learning-in-theano-tensorflow
from __future__ import print_function, division
from builtins import range
# Note: you may need to update your version of future
# sudo pip install -U future
# simple installation with pip:
#
# just one line: pip install <....>.whl
#
# Linux
# https://docs.microsoft.com/en-us/cognitive-toolkit/setup-linux-python
#
# Windows
# https://docs.microsoft.com/en-us/cognitive-toolkit/setup-windows-python
#
# (No Mac)
# Note: useful to understand keras_example.py first
import numpy as np
import matplotlib.pyplot as plt
from util import get_normalized_data, y2indicator
import cntk as C
from cntk.train import Trainer
from cntk.learners import adam
from cntk.ops import relu
from cntk.layers import Dense, Sequential
from cntk.losses import cross_entropy_with_softmax
from cntk.metrics import classification_error
from cntk.train.training_session import *
# get the data, same as Theano + Tensorflow examples
Xtrain, Xtest, Ytrain, Ytest = get_normalized_data()
# get shapes
N, D = Xtrain.shape
K = len(set(Ytrain))
# we want one-hot encoded labels
Ytrain = y2indicator(Ytrain)
Ytest = y2indicator(Ytest)
# split the data
X = X.astype(np.float32)
Y = Y.astype(np.float32)
Xtest = Xtest.astype(np.float32)
Ytest = Ytest.astype(np.float32)
# the model will be a sequence of layers
model = Sequential(
[
Dense(500, activation=relu),
Dense(300, activation=relu),
Dense(K, activation=None),
]
)
# define the inputs and labels
inputs = C.input_variable(D, np.float32, name='inputs')
labels = C.input_variable(K, np.float32, name='labels')
# get the output
logits = model(inputs)
# define loss / metrics
# like Tensorflow the softmax is done
# internally (if needed), so all we need are the logits
ce = cross_entropy_with_softmax(logits, labels)
pe = classification_error(logits, labels)
# training config
batch_size = 32
epochs = 15
n_batches = len(Xtrain) // batch_size
# do the training
# specify the training algorithm
trainer = Trainer(logits, (ce, pe), adam(logits.parameters, lr=1e-2, momentum=0.9))
# helper function
def get_output(node, X, Y):
ret = node.forward(dict(inputs=X, labels=Y))
return list(ret[1].values())[0].mean()
costs = []
errors = []
test_costs = []
test_errors = []
for i in range(epochs):
cost = 0
err = 0
for j in range(n_batches):
Xbatch = Xtrain[j*batch_size:(j+1)*batch_size]
Ybatch = Ytrain[j*batch_size:(j+1)*batch_size]
ret = trainer.train_minibatch(
dict(inputs=Xbatch, labels=Ybatch),
outputs=(ce, pe)
)
cost += ret[1][ce].mean()
err += ret[1][pe].mean()
costs.append(cost / n_batches)
errors.append(err / n_batches)
# test set calculations
test_cost = get_output(ce, Xtest, Ytest)
test_err = get_output(pe, Xtest, Ytest)
test_costs.append(test_cost)
test_errors.append(test_err)
print("epoch i:", i, "cost:", test_cost, "err:", test_err)
plt.plot(costs, label='train cost')
plt.plot(test_costs, label='test cost')
plt.legend()
plt.title("cost")
plt.show()
plt.plot(errors, label='train error')
plt.plot(test_errors, label='test error')
plt.legend()
plt.title("error")
plt.show()