-
Notifications
You must be signed in to change notification settings - Fork 6.4k
/
Copy pathdropout_tensorflow.py
148 lines (119 loc) · 4.89 KB
/
dropout_tensorflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
from __future__ import print_function, division
from builtins import range
# Note: you may need to update your version of future
# sudo pip install -U future
# For the class Data Science: Practical Deep Learning Concepts in Theano and TensorFlow
# https://deeplearningcourses.com/c/data-science-deep-learning-in-theano-tensorflow
# https://www.udemy.com/data-science-deep-learning-in-theano-tensorflow
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from util import get_normalized_data
from sklearn.utils import shuffle
class HiddenLayer(object):
def __init__(self, M1, M2):
self.M1 = M1
self.M2 = M2
W = np.random.randn(M1, M2) * np.sqrt(2.0 / M1)
b = np.zeros(M2)
self.W = tf.Variable(W.astype(np.float32))
self.b = tf.Variable(b.astype(np.float32))
self.params = [self.W, self.b]
def forward(self, X):
return tf.nn.relu(tf.matmul(X, self.W) + self.b)
class ANN(object):
def __init__(self, hidden_layer_sizes, p_keep):
self.hidden_layer_sizes = hidden_layer_sizes
self.dropout_rates = p_keep
def fit(self, X, Y, Xvalid, Yvalid, lr=1e-4, mu=0.9, decay=0.9, epochs=15, batch_sz=100, print_every=50):
X = X.astype(np.float32)
Y = Y.astype(np.int64)
Xvalid = Xvalid.astype(np.float32)
Yvalid = Yvalid.astype(np.int64)
# initialize hidden layers
N, D = X.shape
K = len(set(Y))
self.hidden_layers = []
M1 = D
for M2 in self.hidden_layer_sizes:
h = HiddenLayer(M1, M2)
self.hidden_layers.append(h)
M1 = M2
W = np.random.randn(M1, K) * np.sqrt(2.0 / M1)
b = np.zeros(K)
self.W = tf.Variable(W.astype(np.float32))
self.b = tf.Variable(b.astype(np.float32))
# collect params for later use
self.params = [self.W, self.b]
for h in self.hidden_layers:
self.params += h.params
# set up theano functions and variables
inputs = tf.placeholder(tf.float32, shape=(None, D), name='inputs')
labels = tf.placeholder(tf.int64, shape=(None,), name='labels')
logits = self.forward(inputs)
cost = tf.reduce_mean(
tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits,
labels=labels
)
)
train_op = tf.train.RMSPropOptimizer(lr, decay=decay, momentum=mu).minimize(cost)
# train_op = tf.train.MomentumOptimizer(lr, momentum=mu).minimize(cost)
# train_op = tf.train.AdamOptimizer(lr).minimize(cost)
prediction = self.predict(inputs)
# validation cost will be calculated separately since nothing will be dropped
test_logits = self.forward_test(inputs)
test_cost = tf.reduce_mean(
tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=test_logits,
labels=labels
)
)
n_batches = N // batch_sz
costs = []
init = tf.global_variables_initializer()
with tf.Session() as session:
session.run(init)
for i in range(epochs):
print("epoch:", i, "n_batches:", n_batches)
X, Y = shuffle(X, Y)
for j in range(n_batches):
Xbatch = X[j*batch_sz:(j*batch_sz+batch_sz)]
Ybatch = Y[j*batch_sz:(j*batch_sz+batch_sz)]
session.run(train_op, feed_dict={inputs: Xbatch, labels: Ybatch})
if j % print_every == 0:
c = session.run(test_cost, feed_dict={inputs: Xvalid, labels: Yvalid})
p = session.run(prediction, feed_dict={inputs: Xvalid})
costs.append(c)
e = error_rate(Yvalid, p)
print("i:", i, "j:", j, "nb:", n_batches, "cost:", c, "error rate:", e)
plt.plot(costs)
plt.show()
def forward(self, X):
# tf.nn.dropout scales inputs by 1/p_keep
# therefore, during test time, we don't have to scale anything
Z = X
Z = tf.nn.dropout(Z, self.dropout_rates[0])
for h, p in zip(self.hidden_layers, self.dropout_rates[1:]):
Z = h.forward(Z)
Z = tf.nn.dropout(Z, p)
return tf.matmul(Z, self.W) + self.b
def forward_test(self, X):
Z = X
for h in self.hidden_layers:
Z = h.forward(Z)
return tf.matmul(Z, self.W) + self.b
def predict(self, X):
pY = self.forward_test(X)
return tf.argmax(pY, 1)
def error_rate(p, t):
return np.mean(p != t)
def relu(a):
return a * (a > 0)
def main():
# step 1: get the data and define all the usual variables
Xtrain, Xtest, Ytrain, Ytest = get_normalized_data()
ann = ANN([500, 300], [0.8, 0.5, 0.5])
ann.fit(Xtrain, Ytrain, Xtest, Ytest)
if __name__ == '__main__':
main()