-
Notifications
You must be signed in to change notification settings - Fork 6.4k
/
Copy pathgrid_search.py
82 lines (71 loc) · 2.54 KB
/
grid_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# For the class Data Science: Practical Deep Learning Concepts in Theano and TensorFlow
# https://deeplearningcourses.com/c/data-science-deep-learning-in-theano-tensorflow
# https://www.udemy.com/data-science-deep-learning-in-theano-tensorflow
from __future__ import print_function, division
from builtins import range
# Note: you may need to update your version of future
# sudo pip install -U future
import theano.tensor as T
from theano_ann import ANN
from util import get_spiral, get_clouds
from sklearn.utils import shuffle
import matplotlib.pyplot as plt
import numpy as np
def grid_search():
# get the data and split into train/test
X, Y = get_spiral()
# X, Y = get_clouds()
X, Y = shuffle(X, Y)
Ntrain = int(0.7*len(X))
Xtrain, Ytrain = X[:Ntrain], Y[:Ntrain]
Xtest, Ytest = X[Ntrain:], Y[Ntrain:]
# hyperparameters to try
hidden_layer_sizes = [
[300],
[100,100],
[50,50,50],
]
learning_rates = [1e-4, 1e-3, 1e-2]
l2_penalties = [0., 0.1, 1.0]
# loop through all possible hyperparameter settings
best_validation_rate = 0
best_hls = None
best_lr = None
best_l2 = None
for hls in hidden_layer_sizes:
for lr in learning_rates:
for l2 in l2_penalties:
model = ANN(hls)
model.fit(Xtrain, Ytrain, learning_rate=lr, reg=l2, mu=0.99, epochs=3000, show_fig=False)
validation_accuracy = model.score(Xtest, Ytest)
train_accuracy = model.score(Xtrain, Ytrain)
print(
"validation_accuracy: %.3f, train_accuracy: %.3f, settings: %s, %s, %s" %
(validation_accuracy, train_accuracy, hls, lr, l2)
)
if validation_accuracy > best_validation_rate:
best_validation_rate = validation_accuracy
best_hls = hls
best_lr = lr
best_l2 = l2
print("Best validation_accuracy:", best_validation_rate)
print("Best settings:")
print("hidden_layer_sizes:", best_hls)
print("learning_rate:", best_lr)
print("l2:", best_l2)
# def one():
# X, Y = get_spiral()
# X, Y = shuffle(X, Y)
# Ntrain = int(0.7*len(X))
# Xtrain, Ytrain = X[:Ntrain], Y[:Ntrain]
# # plt.scatter(Xtrain[:,0], Xtrain[:,1], c=Ytrain)
# # plt.show()
# Xtest, Ytest = X[Ntrain:], Y[Ntrain:]
# model = ANN([100,100])
# model.fit(Xtrain, Ytrain, activation=T.nnet.relu, learning_rate=1e-3, mu=0.99, reg=0., epochs=3000, show_fig=True)
# validation_accuracy = model.score(Xtest, Ytest)
# print("validation_accuracy:", validation_accuracy)
# print("train accuracy:", model.score(Xtrain, Ytrain))
if __name__ == '__main__':
grid_search()
# one()