-
Notifications
You must be signed in to change notification settings - Fork 6.4k
/
Copy pathrandom_search.py
76 lines (66 loc) · 2.25 KB
/
random_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# For the class Data Science: Practical Deep Learning Concepts in Theano and TensorFlow
# https://deeplearningcourses.com/c/data-science-deep-learning-in-theano-tensorflow
# https://www.udemy.com/data-science-deep-learning-in-theano-tensorflow
from __future__ import print_function, division
from builtins import range
# Note: you may need to update your version of future
# sudo pip install -U future
# import theano.tensor as T
from theano_ann import ANN
from util import get_spiral, get_clouds
from sklearn.utils import shuffle
import matplotlib.pyplot as plt
import numpy as np
def random_search():
# get the data and split into train/test
X, Y = get_spiral()
# X, Y = get_clouds()
X, Y = shuffle(X, Y)
Ntrain = int(0.7*len(X))
Xtrain, Ytrain = X[:Ntrain], Y[:Ntrain]
Xtest, Ytest = X[Ntrain:], Y[Ntrain:]
# starting hyperparameters
M = 20
nHidden = 2
log_lr = -4
log_l2 = -2 # since we always want it to be positive
max_tries = 30
# loop through all possible hyperparameter settings
best_validation_rate = 0
best_hls = None
best_lr = None
best_l2 = None
for _ in range(max_tries):
model = ANN([M]*nHidden)
model.fit(
Xtrain, Ytrain,
learning_rate=10**log_lr, reg=10**log_l2,
mu=0.99, epochs=3000, show_fig=False
)
validation_accuracy = model.score(Xtest, Ytest)
train_accuracy = model.score(Xtrain, Ytrain)
print(
"validation_accuracy: %.3f, train_accuracy: %.3f, settings: %s, %s, %s" %
(validation_accuracy, train_accuracy, [M]*nHidden, log_lr, log_l2)
)
if validation_accuracy > best_validation_rate:
best_validation_rate = validation_accuracy
best_M = M
best_nHidden = nHidden
best_lr = log_lr
best_l2 = log_l2
# select new hyperparams
nHidden = best_nHidden + np.random.randint(-1, 2) # -1, 0, or 1
nHidden = max(1, nHidden)
M = best_M + np.random.randint(-1, 2)*10
M = max(10, M)
log_lr = best_lr + np.random.randint(-1, 2)
log_l2 = best_l2 + np.random.randint(-1, 2)
print("Best validation_accuracy:", best_validation_rate)
print("Best settings:")
print("best_M:", best_M)
print("best_nHidden:", best_nHidden)
print("learning_rate:", best_lr)
print("l2:", best_l2)
if __name__ == '__main__':
random_search()