-
Notifications
You must be signed in to change notification settings - Fork 6.4k
/
Copy pathutil.py
309 lines (234 loc) · 7.88 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
from __future__ import print_function, division
from builtins import range
# Note: you may need to update your version of future
# sudo pip install -U future
# Some utility functions we need for the class.
# For the class Data Science: Practical Deep Learning Concepts in Theano and TensorFlow
# https://deeplearningcourses.com/c/data-science-deep-learning-in-theano-tensorflow
# https://www.udemy.com/data-science-deep-learning-in-theano-tensorflow
# Note: run this from the current folder it is in.
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression
def get_clouds():
Nclass = 500
D = 2
X1 = np.random.randn(Nclass, D) + np.array([0, -2])
X2 = np.random.randn(Nclass, D) + np.array([2, 2])
X3 = np.random.randn(Nclass, D) + np.array([-2, 2])
X = np.vstack([X1, X2, X3])
Y = np.array([0]*Nclass + [1]*Nclass + [2]*Nclass)
return X, Y
def get_spiral():
# Idea: radius -> low...high
# (don't start at 0, otherwise points will be "mushed" at origin)
# angle = low...high proportional to radius
# [0, 2pi/6, 4pi/6, ..., 10pi/6] --> [pi/2, pi/3 + pi/2, ..., ]
# x = rcos(theta), y = rsin(theta) as usual
radius = np.linspace(1, 10, 100)
thetas = np.empty((6, 100))
for i in range(6):
start_angle = np.pi*i / 3.0
end_angle = start_angle + np.pi / 2
points = np.linspace(start_angle, end_angle, 100)
thetas[i] = points
# convert into cartesian coordinates
x1 = np.empty((6, 100))
x2 = np.empty((6, 100))
for i in range(6):
x1[i] = radius * np.cos(thetas[i])
x2[i] = radius * np.sin(thetas[i])
# inputs
X = np.empty((600, 2))
X[:,0] = x1.flatten()
X[:,1] = x2.flatten()
# add noise
X += np.random.randn(600, 2)*0.5
# targets
Y = np.array([0]*100 + [1]*100 + [0]*100 + [1]*100 + [0]*100 + [1]*100)
return X, Y
def get_transformed_data():
print("Reading in and transforming data...")
if not os.path.exists('../large_files/train.csv'):
print('Looking for ../large_files/train.csv')
print('You have not downloaded the data and/or not placed the files in the correct location.')
print('Please get the data from: https://www.kaggle.com/c/digit-recognizer')
print('Place train.csv in the folder large_files adjacent to the class folder')
exit()
df = pd.read_csv('../large_files/train.csv')
data = df.values.astype(np.float32)
np.random.shuffle(data)
X = data[:, 1:]
Y = data[:, 0].astype(np.int32)
Xtrain = X[:-1000]
Ytrain = Y[:-1000]
Xtest = X[-1000:]
Ytest = Y[-1000:]
# center the data
mu = Xtrain.mean(axis=0)
Xtrain = Xtrain - mu
Xtest = Xtest - mu
# transform the data
pca = PCA()
Ztrain = pca.fit_transform(Xtrain)
Ztest = pca.transform(Xtest)
plot_cumulative_variance(pca)
# take first 300 cols of Z
Ztrain = Ztrain[:, :300]
Ztest = Ztest[:, :300]
# normalize Z
mu = Ztrain.mean(axis=0)
std = Ztrain.std(axis=0)
Ztrain = (Ztrain - mu) / std
Ztest = (Ztest - mu) / std
return Ztrain, Ztest, Ytrain, Ytest
def get_normalized_data():
print("Reading in and transforming data...")
if not os.path.exists('../large_files/train.csv'):
print('Looking for ../large_files/train.csv')
print('You have not downloaded the data and/or not placed the files in the correct location.')
print('Please get the data from: https://www.kaggle.com/c/digit-recognizer')
print('Place train.csv in the folder large_files adjacent to the class folder')
exit()
df = pd.read_csv('../large_files/train.csv')
data = df.values.astype(np.float32)
np.random.shuffle(data)
X = data[:, 1:]
Y = data[:, 0]
Xtrain = X[:-1000]
Ytrain = Y[:-1000]
Xtest = X[-1000:]
Ytest = Y[-1000:]
# normalize the data
mu = Xtrain.mean(axis=0)
std = Xtrain.std(axis=0)
np.place(std, std == 0, 1)
Xtrain = (Xtrain - mu) / std
Xtest = (Xtest - mu) / std
return Xtrain, Xtest, Ytrain, Ytest
def plot_cumulative_variance(pca):
P = []
for p in pca.explained_variance_ratio_:
if len(P) == 0:
P.append(p)
else:
P.append(p + P[-1])
plt.plot(P)
plt.show()
return P
def forward(X, W, b):
# softmax
a = X.dot(W) + b
expa = np.exp(a)
y = expa / expa.sum(axis=1, keepdims=True)
return y
def predict(p_y):
return np.argmax(p_y, axis=1)
def error_rate(p_y, t):
prediction = predict(p_y)
return np.mean(prediction != t)
def cost(p_y, t):
tot = t * np.log(p_y)
return -tot.sum()
def gradW(t, y, X):
return X.T.dot(t - y)
def gradb(t, y):
return (t - y).sum(axis=0)
def y2indicator(y):
N = len(y)
y = y.astype(np.int32)
ind = np.zeros((N, 10))
for i in range(N):
ind[i, y[i]] = 1
return ind
def benchmark_full():
Xtrain, Xtest, Ytrain, Ytest = get_normalized_data()
print("Performing logistic regression...")
# lr = LogisticRegression(solver='lbfgs')
# convert Ytrain and Ytest to (N x K) matrices of indicator variables
N, D = Xtrain.shape
Ytrain_ind = y2indicator(Ytrain)
Ytest_ind = y2indicator(Ytest)
W = np.random.randn(D, 10) / np.sqrt(D)
b = np.zeros(10)
LL = []
LLtest = []
CRtest = []
# reg = 1
# learning rate 0.0001 is too high, 0.00005 is also too high
# 0.00003 / 2000 iterations => 0.363 error, -7630 cost
# 0.00004 / 1000 iterations => 0.295 error, -7902 cost
# 0.00004 / 2000 iterations => 0.321 error, -7528 cost
# reg = 0.1, still around 0.31 error
# reg = 0.01, still around 0.31 error
lr = 0.00004
reg = 0.01
for i in range(500):
p_y = forward(Xtrain, W, b)
# print "p_y:", p_y
ll = cost(p_y, Ytrain_ind)
LL.append(ll)
p_y_test = forward(Xtest, W, b)
lltest = cost(p_y_test, Ytest_ind)
LLtest.append(lltest)
err = error_rate(p_y_test, Ytest)
CRtest.append(err)
W += lr*(gradW(Ytrain_ind, p_y, Xtrain) - reg*W)
b += lr*(gradb(Ytrain_ind, p_y) - reg*b)
if i % 10 == 0:
print("Cost at iteration %d: %.6f" % (i, ll))
print("Error rate:", err)
p_y = forward(Xtest, W, b)
print("Final error rate:", error_rate(p_y, Ytest))
iters = range(len(LL))
plt.plot(iters, LL, iters, LLtest)
plt.show()
plt.plot(CRtest)
plt.show()
def benchmark_pca():
Xtrain, Xtest, Ytrain, Ytest = get_transformed_data()
print("Performing logistic regression...")
N, D = Xtrain.shape
Ytrain_ind = np.zeros((N, 10))
for i in range(N):
Ytrain_ind[i, Ytrain[i]] = 1
Ntest = len(Ytest)
Ytest_ind = np.zeros((Ntest, 10))
for i in range(Ntest):
Ytest_ind[i, Ytest[i]] = 1
W = np.random.randn(D, 10) / np.sqrt(D)
b = np.zeros(10)
LL = []
LLtest = []
CRtest = []
# D = 300 -> error = 0.07
lr = 0.0001
reg = 0.01
for i in range(200):
p_y = forward(Xtrain, W, b)
# print "p_y:", p_y
ll = cost(p_y, Ytrain_ind)
LL.append(ll)
p_y_test = forward(Xtest, W, b)
lltest = cost(p_y_test, Ytest_ind)
LLtest.append(lltest)
err = error_rate(p_y_test, Ytest)
CRtest.append(err)
W += lr*(gradW(Ytrain_ind, p_y, Xtrain) - reg*W)
b += lr*(gradb(Ytrain_ind, p_y) - reg*b)
if i % 10 == 0:
print("Cost at iteration %d: %.6f" % (i, ll))
print("Error rate:", err)
p_y = forward(Xtest, W, b)
print("Final error rate:", error_rate(p_y, Ytest))
iters = range(len(LL))
plt.plot(iters, LL, iters, LLtest)
plt.show()
plt.plot(CRtest)
plt.show()
if __name__ == '__main__':
# benchmark_pca()
benchmark_full()