-
Notifications
You must be signed in to change notification settings - Fork 6.4k
/
Copy pathapp_caller.py
33 lines (28 loc) · 985 Bytes
/
app_caller.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from __future__ import print_function, division
from builtins import range, input
# Note: you may need to update your version of future
# sudo pip install -U future
# https://deeplearningcourses.com/c/data-science-supervised-machine-learning-in-python
# https://www.udemy.com/data-science-supervised-machine-learning-in-python
import requests
import numpy as np
import matplotlib.pyplot as plt
from util import get_data
# make a prediction from our own server!
# in reality this could be coming from any client
X, Y = get_data()
N = len(Y)
while True:
i = np.random.choice(N)
r = requests.post("http://localhost:8888/predict", data={'input': X[i]})
print("RESPONSE:")
print(r.content)
j = r.json()
print(j)
print("target:", Y[i])
plt.imshow(X[i].reshape(28, 28), cmap='gray')
plt.title("Target: %d, Prediction: %d" % (Y[i], j['prediction']))
plt.show()
response = input("Continue? (Y/n)\n")
if response in ('n', 'N'):
break